

Département de la Loire-Atlantique

Canton d'Ancenis Arrondissement de Châteaubriant-Ancenis

Commune de SAINT-MARS-LA-JAILLE

SCHÉMA DIRECTEUR DE GESTION DES EAUX PLUVIALES

Phase II

Étude sommaire des développements futurs

Mai 2018

SET Environnement - 26 ter rue de La Lande Gohin – 35430 ST-JOUAN-DES-GUERETS EURL au capital de 7700 € - Code APE : 7112B – RCS SAINT-MALO 443677877

Tel: 02 99 58 26 44 - Télécopie: 02 99 58 26 42

Courriel: contact@setenvironnement.com - Site internet: http://www.setenvironnement.com/

SOMMAIRE

SOMMAIRE	1
INTRODUCTION	4
1 RAPPEL DU DIAGNOSTIC	5
1.1 Diagnostic du réseau des eaux pluviales	5
1.1.1 Problèmes hydrauliques sur le réseau	
1.1.2 Écoulements par temps sec	
1.1.3 État d'entretien du réseau	
1.2 Zones urbanisables et zones OAP	
2 PROPOSITION D'AMÉNAGEMENTS ZONES "U"	8
2.1 Principe	8
2.2 Problème 1 : Rue de la Vigne.	
2.2.1 Situation actuelle	
2.2.2 Projet d'aménagement	
2.3 Problème 2 : Lotissement rue de Provence / rue des Lavandes	
2.3.1 Situation actuelle	11
2.3.2 Variante n°1	
2.3.3 Variante n°2	13
2.3.4 Synthèse des variantes	15
2.4 Problème 3 : Rue de la Ville Jolie D9.	
2.4.1 Situation actuelle	15
2.4.2 Projet d'aménagement	15
2.5 Problème 4 : Rue de l'Europe / Rue de l'Atlantique (ZI de l'Erdre)	18
2.5.1 Situation actuelle	
2.5.2 Variante n°1	18
2.5.3 Variante n°2	21
2.5.4 Synthèse des variantes	22
2.6 Problème 5 : Rue de la Durantaie D28 (ZI de l'Erdre)	23
2.6.1 Situation actuelle	
2.6.2 Projet d'aménagement	23
2.7 Problème 6 : Rue des Huguenots / Rue des Chardonnerets	26
2.7.1 Situation actuelle	26
2.7.2 Variante n°1	26
2.7.3 Variante n°2	29
2.7.4 Synthèse des variantes	32
2.8 Problème 7 : D878A / bas du lieu-dit La Champelière	32
2.8.1 Situation actuelle	32
2.8.2 Projet d'aménagement	32
2.9 Problème 8 : Boulevard Jules Ferry	
2.9.1 Situation actuelle	34
2.9.2 Projet d'aménagement	34
2.10 Problème 9 : Rue de la Charlotte	36

	2.10.1 Situation actuelle	36
	2.10.2 Projet d'aménagement	36
	2.11 Problème 10 : Rue des Riantières Sud (ZI de l'Erdre)	37
	2.11.1 Situation actuelle	37
	2.11.2 Variante n°1	37
	2.11.3 Variante n°2	39
	2.11.4 Synthèse des variantes	40
	2.12 Problème 11 : ZI Est rue des Riantières (ZI de l'Erdre)	
	2.12.1 Situation actuelle	40
	2.12.2 Projet d'aménagement	41
	2.13 Problème 12 : ZI grand bassin (ZI de l'Erdre)	
	2.13.1 Situation actuelle	
	2.13.2 Variante n°1	42
	2.13.3 Variante n°2	44
	2.13.4 Synthèse des variantes	45
	2.14 Problème 13 : Rue des Riantières (ZI de l'Erdre)	45
	2.14.1 Situation actuelle	
	2.14.2 Projet d'aménagement	
	2.15 Problème 14 : Boulevard de la Haie Daniel	
	2.15.1 Situation actuelle	47
	2.15.2 Variante n°1	
	2.15.3 Variante n°2	49
	2.15.4 Synthèse des variantes	
	2.16 Problème 15 : Rue du Clos / D33	
	2.16.1 Situation actuelle	
	2.16.2 Variante n°1	
	2.16.3 Variante n°2	
	2.16.4 Synthèse des variantes	55
	2.17 Problème 16 : Centre bourg.	
	2.17.1 Situation actuelle	
	2.17.2 Projet d'aménagement	
	2.18 Problème 17 : Rue des Platanes partie Sud.	
	2.18.1 Situation actuelle	
	2.18.2 Projet d'aménagement	60
	2.19 Problème 18 : Rue des Acacias.	
	2.19.1 Situation actuelle	
	2.19.2 Variante n°1	
	2.19.3 Variante n°2	
	2.19.4 Synthèse des variantes	
3	PROPOSITION D'AMÉNAGEMENTS ZONES "AU"	
	3.1 Présentation.	68
	3.2 Techniques de gestion des eaux pluviales	
	3.2.1 La cuve enterrée	
	3.2.2 Le puits d'infiltration	69
	3.2.3 Les tranchées d'infiltration	
	3.2.4 Le bassin de rétention	
	3.3 Aménagements des zones AU de petite taille et des dents creuses	72

3.3.1 Principe	72
3.3.2 Dimensionnement et coût	
3.3.3 Imperméabilisation supplémentaire des zones urbanisées	74
3.4 Aménagements des zones à urbaniser.	75
3.4.1 Principe	75
3.4.2 Secteur n°1 - 1 AUb « La Léverie »	
3.4.3 Secteur n°2 – 1AUb « Rue des Platanes 1 »	77
3.4.4 Secteur n°3 – 1AUb « Rue des Platanes 2 »	78
3.4.5 Secteur n°4 – 1AUb « Torterelle »	80
3.4.6 Secteur n°5 – 1AUb « Route de Bonnoeuvre / Rue des Platanes »	
3.4.7 Secteur n°6 – 1AUb « Rue des Glycines / Boulevard de la Gare »	
3.4.8 Secteur n°7 – 1AUe « Le Prateau »	
3.4.9 Secteur n°8 – 1AUe « Les Basses Riantières »	85
CONCLUSION	87
ANNEXES	88
ANNEXE 1 : CALCULS HYDRAULIQUES À LA PARCELLE	89
ANNEXE 2 : CALCULS HYDRAULIQUES DES OUVRAGES COLLECTIFS	90
ANNEXE 3 : PLAN DES ZONES URBANISABLES	9 1
ANNEXE 4 : RÉSULTATS DE LA SIMULATION DE PHASE I	92

INTRODUCTION

La commune de SAINT-MARS-LA-JAILLE se trouve à environ 14 km au Nord d'ANCENIS, 22 km au Sud-Est de CHATEAUBRIANT et à 34 km au Nord-Est de NANTES, dans le département de la Loire-Atlantique. Elle appartient à la communauté de communes du Pays d'Ancenis (COMPA).

La commune de SAINT-MARS-LA-JAILLE souhaite mettre en place un Schéma Directeur des Eaux Pluviales pour ne plus gérer les problèmes pluviaux au coup par coup, mais d'une manière globale et cohérente.

L'étude se décompose en 5 phases :

- PHASE I : Étude détaillée de la situation actuelle.
- PHASE II : Étude sommaire des développements futurs envisageables,
- PHASE III : Étude détaillée de la situation future,
- PHASE IV : Zonage d'assainissement pluvial,
- PHASE V : Dossier d'autorisation au titre de la loi sur l'eau.

La phase II de cette étude permet de vérifier que l'évolution maximale de l'urbanisation du territoire communal, prévue dans le PLU est possible d'un point de vue hydraulique et permet de proposer d'autres scénarios de développement du territoire en terme d'urbanisation qui soient les plus cohérents possibles vis-à-vis de l'aspect pluvial. Elle permet d'appréhender les différentes possibilités d'aménagements et de comparer les incidences de chacun d'entre eux.

1 RAPPEL DU DIAGNOSTIC

1.1 Diagnostic du réseau des eaux pluviales

1.1.1 <u>Problèmes hydrauliques sur le réseau</u>

Plusieurs dysfonctionnements hydrauliques ont été observés sur la commune lors d'événements pluvieux importants.

Ils ont plusieurs origines : réseaux sous-dimensionnés, pentes des canalisations insuffisantes, alternances fossés/buses, etc. Chacun d'eux a été analysé afin d'une part de définir leur ampleur et d'autre part de rechercher des solutions.

Quelques sites font également l'objet d'un déficit d'entretien, ayant pour conséquence un colmatage de buses et des regards, et une perte de capacité de ces ouvrages.

Dix-huit sites réellement problématiques ont été identifiés en phase I, et devront faire l'objet d'aménagements. Il s'agit de :

- 1. Rue de la Vigne
- 2. Lotissement rue de Provence / rue des Lavandes
- 3. Rue de la Ville Jolie D9
- 4. Rue de l'Europe / Rue de l'Atlantique (ZI de l'Erdre)
- 5. Rue de la Durantaie D28 (ZI de l'Erdre)
- 6. Rue des Huguenots / rue des Chardonnerets
- 7. D878A / bas du lieu-dit La Champelière
- 8. Boulevard Jules Ferry
- 9. Rue de la Charlotte
- 10. Rue des Riantières Sud (ZI de l'Erdre)
- 11. ZI Est rue des Riantières (ZI de l'Erdre)
- 12. ZI grand bassin (ZI de l'Erdre)
- 13. Rue des Riantières (ZI de l'Erdre)
- 14. Boulevard de la Haie Daniel
- 15. Rue du Clos / D33
- 16. Centre bourg
- 17. Rue des Platanes partie Sud
- 18. Rue des Acacias

Annexe 4 : Résultats de la modélisation hydraulique

1.1.2 <u>Écoulements par temps sec</u>

1.1.2.1 Eaux usées

Il existe un seul regard dans lequel des eaux usées présentes dans le réseau des eaux pluviales ont été observées. Les regards concernés ont été identifiés lors du diagnostic. Ils sont récapitulés dans le tableau suivant :

Tableau 1 : Localisation des contaminations par des eaux usées

Localisation	Regard	
Rue de la Charlotte	232	

Pour chacun d'eux, les branchements des riverains devront être contrôlés par la société exploitant les réseaux des eaux usées. Si nécessaire, des tests à la fumée pourront être réalisés.

1.1.2.2 Eaux de nappe

La contamination par des eaux de nappes est peu fréquente sur la commune de SAINT-MARS-LA-JAILLE. Elle se situe exclusivement à proximité des exutoires, le réseau n'est donc contaminé que sur un très faible linéaire.

Le débit de ces eaux de nappe est relativement faible par rapport aux débits des eaux météoriques. La surcharge qu'ils engendrent n'est donc pas problématique.

1.1.3 État d'entretien du réseau

Après avoir parcouru et observé l'ensemble du réseau, des problèmes d'entretien ont été constatés.

Une partie des fossés recevant les eaux pluviales de la zone étudiée ne sont pas suffisamment entretenus. Ces fossés sont pour beaucoup comblés par la végétation et l'accumulation de débris végétaux. En conséquence, plusieurs buses qui rejettent les eaux pluviales dans ces fossés se trouvent complètement bouchées, certaines sont même enfouies.

De plus il a été constaté plusieurs accumulations de débris végétaux, de sables et graviers au niveau de plusieurs regards. Une vérification régulière devra être effectuée pour éviter de créer des obstacles dans l'écoulement des eaux.

1.2 Zones urbanisables et zones OAP

Les zones à urbaniser, dites **zones "AU"** sont les secteurs à caractère naturel de la commune, destinés à être ouverts à l'urbanisation, lorsque les voies publiques et les réseaux d'eau, d'électricité et, le cas échéant, d'assainissement existant à la périphérie immédiate de la zone AU ont une capacité suffisante pour desservir les constructions à implanter dans l'ensemble de cette zone.

Les zones OAP (Orientations d'Aménagement et de Programmation) sont des zones où il y a des projets de densification du bourg.

Le tableau suivant présente les zones « AU » du PLU concernées par l'étude :

Tableau 2 : Zones urbanisables

Code	Nom	Surface (ha)
1AUb	Lieu-dit La Léverie	1,14
1AUb	Rue des Platanes 1	0,75
1AUb	Rue des Platanes 2	0,387
1AUb	Lieu-dit Torterelle	4,51
1AUb	Route de Bonnoeuvre / Rue des Platanes	0,66
1AUb	Rue des Glycines / Boulevard de la Gare	0,35
1AUe	Lieu-dit Le Prateau	9,69
1AUe	Lieu-dit Les Basses Riantières	17,34
Total		34,83

La localisation de ces zones figure en annexe. Ces projets d'urbanisation vont, en imperméabilisant des surfaces supplémentaires, engendrer des surcharges du réseau existant et des rejets supplémentaires vers le milieu récepteur. Il est donc nécessaire de les anticiper et de proposer, d'ores et déjà, des solutions de gestion des eaux pluviales pour ceux-ci.

Annexe 3: Plan des zones urbanisables

2 PROPOSITION D'AMÉNAGEMENTS ZONES "U"

2.1 Principe

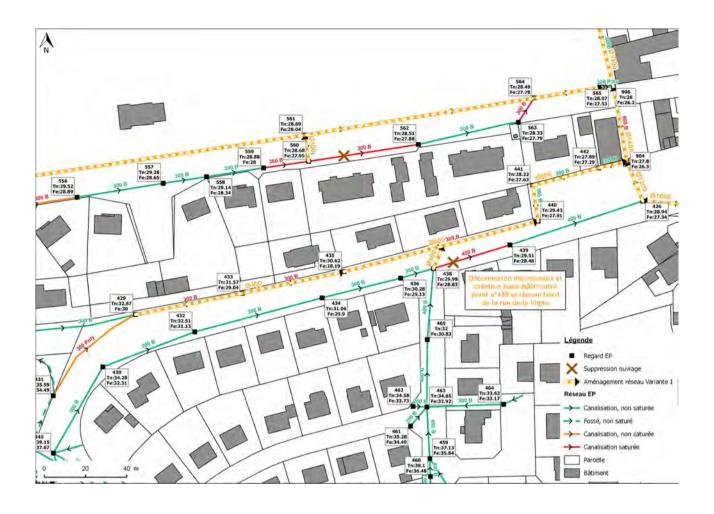
Les propositions d'aménagement visent à résoudre les problèmes hydrauliques existants sur la commune et à gérer les eaux pluviales des zones urbanisables.

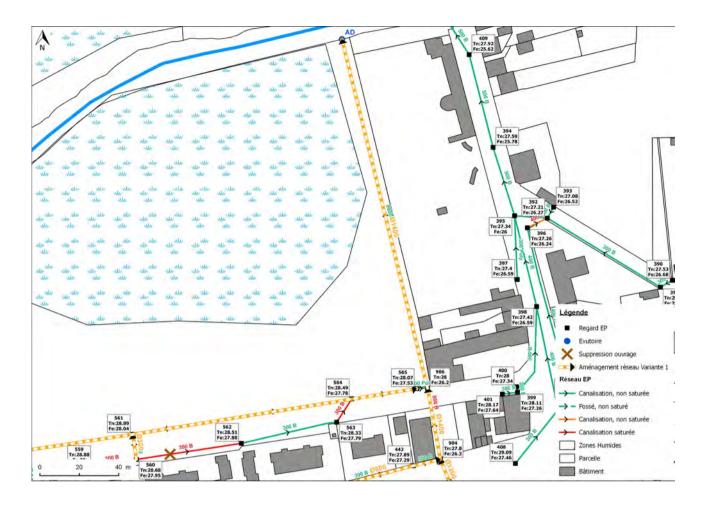
2.2 Problème 1 : Rue de la Vigne

2.2.1 Situation actuelle

Les réseaux situés dans la partie basse de la rue de la Vigne reçoivent une grande partie des eaux pluviales de la rue de la Vigne, de la rue de Normandie, de la rue du Poitou et de la rue de Provence. Les pentes sur ce secteur sont conséquentes.

Le débit à gérer est très important, et il est collecté dans une canalisation de diamètre 500 pour la rue de Normandie et du Poitou avant de se déverser dans une canalisation de diamètre 300 rue de la Vigne. La capacité de ces canalisations est donc très insuffisante aux vues des surfaces collectées. De plus, les pentes des canalisations dans la partie basse de la rue de la Vigne restent faibles du fait de la topographie du secteur. Les réseaux sont donc fortement saturés.


2.2.2 Projet d'aménagement


2.2.2.1 Aménagement

Les problèmes hydrauliques existants dans la partie basse de la rue de la Vigne sont uniquement liés à un fort sous-dimensionnement des réseaux dans ce secteur, combiné aux faibles pentes des canalisations et à la topographie de la zone qui est assez plane. En effet, les débits à gérer dans ces rues sont très importants et ils proviennent d'une zone très urbanisée.

La solution proposée consiste à :

- Déconnecter les branches du réseau provenant de la rue de Provence et de la partie Sud de la rue de la Vigne, du reste du réseau situé dans la partie Sud de la rue de la Vigne, et à les relier au réseau situé du côté Nord de la rue de la Vigne. Cet aménagement consiste donc à créer une canalisation entre le regard n°438 et le réseau situé du côté Nord de la rue de la Vigne. Un nouveau regard devra être créé entre le regard n°435 et le regard n°440 afin de pouvoir y raccorder la nouvelle canalisation créée et provenant du regard n°438. Le diamètre de la canalisation à créer sera de 500 mm.
- Redimensionner les réseaux situés dans la partie basse de la rue de la Vigne, entre les regards n°429 et n°435. Le diamètre préconisé pour ces canalisations est de 400 mm.
- Redimensionner les réseaux situés dans la partie basse de la rue de la Vigne, entre les regards n°435 et n°904. Le diamètre préconisé pour ces canalisations est de 600 mm.
- Redimensionner la canalisation située entre le regard n°426 et le regard n°904, et qui reçoit une partie des eaux de la rue de la Vigne, ainsi que les eaux de la rue d'Ancenis, de la rue de l'Europe et de la rue de la Durantaie. Le diamètre préconisé pour cette canalisation est de 1200 mm.
- Redimensionner les réseaux situés en aval de la rue de la Vigne et jusqu'à l'exutoire, entre le regard n° 904 et l'exutoire AD. Le diamètre préconisé pour ces canalisations est de 1400 mm.

2.2.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra de décharger les réseaux situés du côté Sud de la rue de la Vigne. De plus, il permettra d'éviter la saturation des réseaux situés dans la rue de la Vigne, et en aval jusqu'à l'exutoire.

2.2.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.2.2.4 Coût

Tableau 3 : Coût de l'aménagement

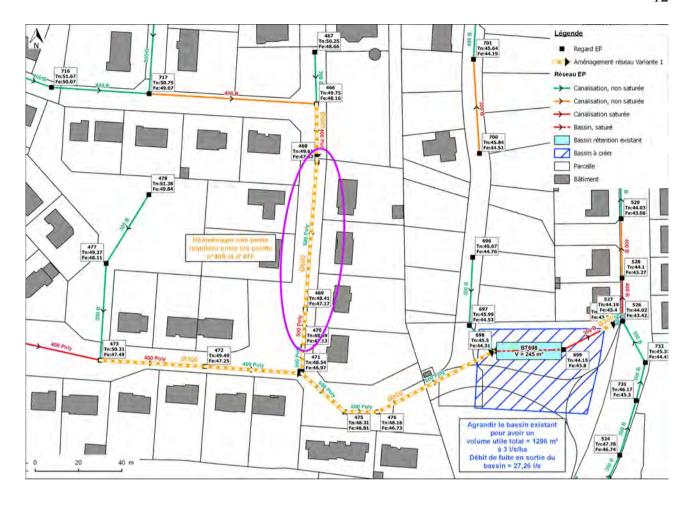
Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 400 sous voirie	104	140	14560
Canalisation en 500 sous voirie	12	150	1800
Canalisation en 600 sous voirie	162	200	32400
Canalisation en 1200 sous voirie	22	500	11000
Canalisation en 1400 sous voirie	40	650	26000
TOTAL			85760

SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II
-------------------	---

2.3 Problème 2 : Lotissement rue de Provence / rue des Lavandes

2.3.1 <u>Situation actuelle</u>

Les réseaux situés à l'extrémité Sud de la rue de Provence collectent les réseaux de la rue des Lavandes, de la rue d'Aquitaine, d'une partie de la rue de Normandie et d'une partie de la rue de Poitout. Les pentes des réseaux du secteur sont faibles ce qui entraîne une stagnation des eaux pluviales et un débordement des canalisations. Il y a donc une saturation des réseaux de canalisations sur cette zone


De plus, le bassin de rétention existant situé au Sud de la rue du Berry, reçoit les eaux de l'ensemble cette zone et collecte également une petite partie du lotissement situé rue du Berry. Ce bassin a été dimensionné pour collecter les eaux issues du lotissement situé rue du Berry et non pas les eaux des lotissements situés à l'Ouest, rue des Lavandes et rue de Provence. Celui-ci est donc fortement sous-dimensionné aux vues des surfaces collectées et des débits générés, ce qui entraîne une saturation très forte au niveau du bassin, ainsi qu'en aval.

Les réseaux situés en aval du bassin dans la rue d'Ancenis sont donc fortement sous-dimensionnés aux vues des surfaces collectées. De plus, le secteur est situé dans une zone topographiquement plane et la pente des canalisations est très faible. Les réseaux sont donc fortement saturés dans cette zone.

2.3.2 Variante n°1

2.3.2.1 Aménagement

- Agrandir le bassin de rétention existant pour pouvoir réguler les eaux de l'ensemble de la zone amont. Cette solution permet ainsi de décharger fortement les réseaux situés en aval dans la rue d'Ancenis et d'éviter ainsi leur redimensionnement. L'ouvrage de rétention devra avoir un volume utile total de 1296 m³ (volume existant = environ 245 m³), et être régulé à 3 l/s/ha, soit avoir un débit de fuite en sortie de l'ouvrage de 27,26 l/s.
- Redimensionner les réseaux situés dans la rue des Lavandes, entre les regards n°473 et n°471. Le diamètre préconisé pour ces canalisations est de 500 mm.
- Redimensionner les réseaux situés dans la partie Sud de la rue de Provence. Le diamètre préconisé pour ces canalisations est de 500 mm entre les regards n°466 et n°468, et de 600 mm entre les regards n°468 et n°471.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°468 et n°470.
- Redimensionner les réseaux situés en aval du croisement entre la rue des Lavandes et la rue de Provence, et ce jusqu'à l'ouvrage de rétention, soit entre les regards n°471 et n°698. Le diamètre préconisé pour ces canalisations est de 800 mm.

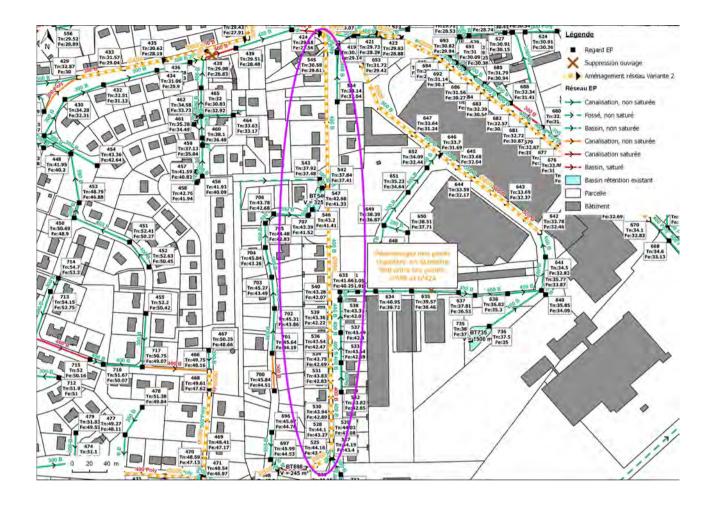
2.3.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra de tamponner les débits provenant du lotissement. Les débits seront fortement diminués à l'aval et cet aménagement permettra d'éviter la saturation des réseaux situés en aval, dans la rue d'Ancenis.

2.3.2.3 <u>Efficacité en termes de dépollution des eaux</u>

Cet aménagement permettra un abattement important des polluants, et un retour vers la nappe d'une partie des eaux stockées.

2.3.2.4 Coût


Tableau 4 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	PU (€)	PT (€)
Agrandissement du bassin de rétention existant	-	1051	60	63060
Canalisation en 300 sous prairie	8	-	45	360
Canalisation en 500 sous voirie	119	-	150	17850
Canalisation en 600 sous voirie	100	-	200	20000
Canalisation en 800 sous voirie	104	-	300	31200
TOTAL				132470

2.3.3 Variante n°2

2.3.3.1 Aménagement

- Redimensionner les réseaux situés dans la rue des Lavandes, entre les regards n°473 et n°471. Le diamètre préconisé pour ces canalisations est de 500 mm.
- Redimensionner les réseaux situés dans la partie Sud de la rue de Provence. Le diamètre préconisé pour ces canalisations est de 500 mm entre les regards n°466 et n°468, et de 600 mm entre les regards n°468 et n°471.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°468 et n°470.
- Redimensionner les réseaux situés en aval du croisement entre la rue des Lavandes et la rue de Provence, et ce jusqu'à l'ouvrage de rétention existant, soit entre les regards n°471 et n°698. Le diamètre préconisé pour ces canalisations est de 800 mm.
- Redimensionner l'ensemble des réseaux situés en aval du bassin de rétention existant, dans la rue d'Ancenis, entre les regards n°699 et n°424. Le diamètre préconisé pour ces canalisations est de 800 mm.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°699 et n°424.

2.3.3.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux de cette zone.

2.3.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.3.3.4 Coût

Tableau 5 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	PU (€)	PT (€)
Canalisation en 500 sous voirie	119	-	150	17850
Canalisation en 600 sous voirie	100	-	200	20000
Canalisation en 800 sous voirie	630	-	300	189000
TOTAL				226850

2.3.4 Synthèse des variantes

Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

Variante nº1 Variante n°2 Agrandissement du bassin de Redimensionnement canalisations en rétention existant de 1051 m³ (volume aval du bassin existant en Ø500 mm. utile total nécessaire = 1296 m³) et Ø600 mm et Ø800 mm. Aménagement proposé redimensionnement canalisations en Redimensionnement en Ø800 mm rue aval du bassin en Ø500 mm, Ø600 d'Ancenis mm et Ø800 mm 226 850,00 € Estimation du coût global 132 470,00 € Efficacité hydraulique +++ +++ Incidence sur le milieu récepteur +++ Disponibilité du foncier Coût très élevé Inconvénient

Tableau 6 : Comparatif des aménagements

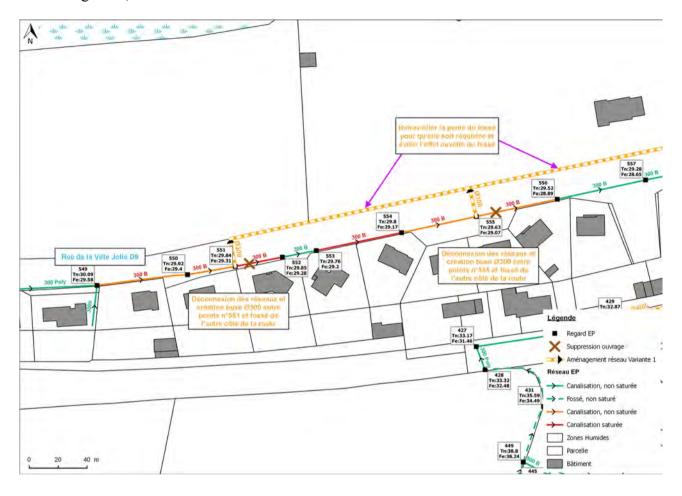
Les deux variantes permettent de résoudre les problèmes de saturation des réseaux observés dans cette zone. La variante n°1 permet également d'améliorer fortement la qualité du rejet des eaux pluviales de cette zone sur le milieu naturel. De plus, cette variante permet de décharger fortement les réseaux situés en aval, et elle est moins coûteuse que la deuxième, qui est plus environ 1,7 fois plus chère.

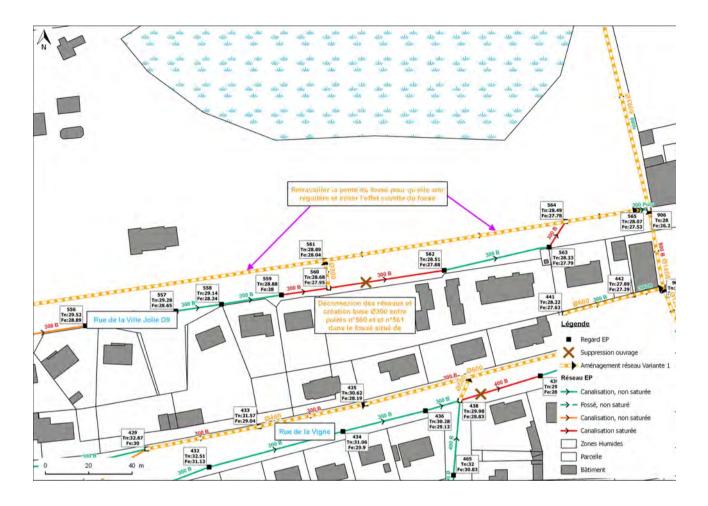
2.4 Problème 3 : Rue de la Ville Jolie D9

2.4.1 Situation actuelle

La rue de la Ville Jolie se trouve dans une zone topographiquement plane. De plus, les pentes des canalisations dans cette rue sont faibles, voire très faibles, ce qui entraîne un mauvais écoulement des eaux et donc une saturation du réseau à cet endroit. Ils récoltent une zone pentue en amont. Les canalisations du côté Sud de la rue sont en diamètre 300 sur toute la longueur de la rue, ce qui est insuffisant vis-à-vis de la très faible pente des canalisations.

Les réseaux situés au niveau de la rue de la Ville Jolie sont donc saturés du fait d'une faible pente des canalisations, mais également des diamètres des canalisations qui sont insuffisants.


2.4.2 Projet d'aménagement


2.4.2.1 Aménagement

La solution proposée consiste à :

Créer trois traversées de route permettant d'envoyer les eaux des canalisations de diamètre 300 mm, situées du côté Sud de la rue de la Ville Jolie, dans le fossé, situé du côté Nord de la rue de la ville Jolie. Les canalisations à créer seront réalisées entre le regard n°551 et le fossé, entre le regard n°555 et le fossé et entre le regard n°560 et le fossé. Le diamètre préconisé pour les trois canalisations à créer est de 300 mm. Cet aménagement permettra de réduire fortement les débits reçus dans les canalisations situées du côté Sud de la rue de la Ville Jolie, et d'éviter ainsi leur redimensionnement.

- Retravailler la pente du fossé, situé du côté Nord de la rue de la Ville Jolie, pour qu'elle soit régulière, et ainsi éviter l'effet cuvette du fossé.

2.4.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra de décharger les réseaux situés dans la rue de la Ville Jolie (D9), et ainsi de limiter les problèmes de saturation de cette zone.

2.4.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un léger abattement des polluants du fait qu'une partie de ces eaux transiteront dans le fossé situé au Nord de la rue.

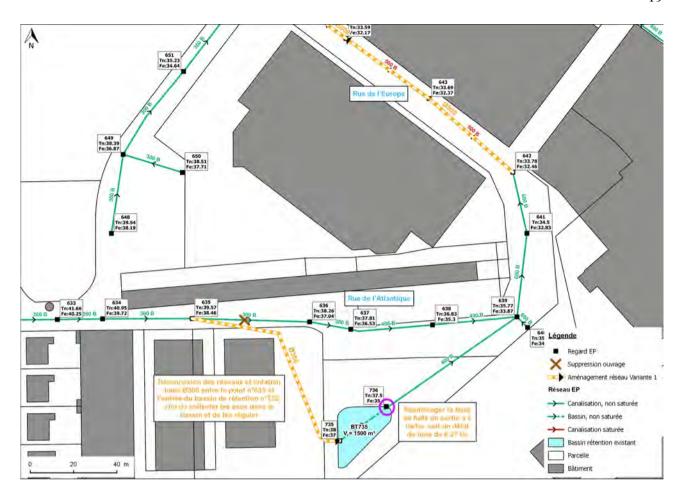
2.4.2.4 Coût

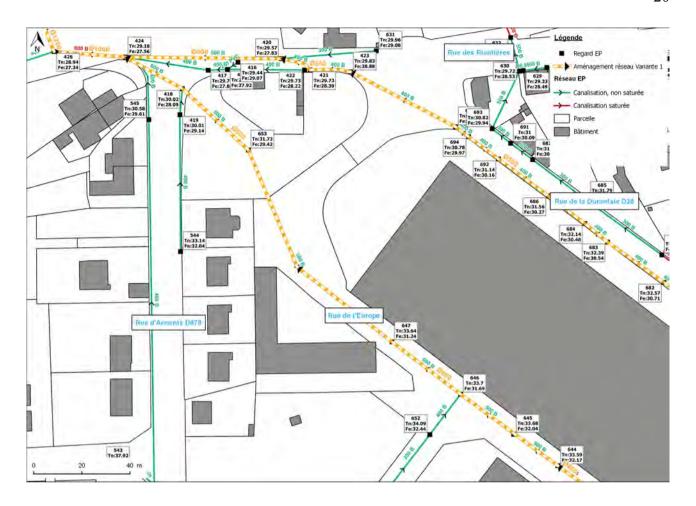
Tableau 7 : Coût de l'aménagement

Ouvrage	Longueur (m)	PU (€)	PT (€)
Canalisation en 300 sous voirie	40	130	5200
Curage et réaménagement pente fossé	414	20	8280
TOTAL			13480

SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II

2.5 Problème 4 : Rue de l'Europe / Rue de l'Atlantique (ZI de l'Erdre)


2.5.1 Situation actuelle


Les pentes des canalisations situées dans la rue de l'Europe, sont faibles, ce qui entraîne une saturation du réseau. De plus, le diamètre des canalisations n'est pas cohérent avec les débits transités. En effet, le réseau est en diamètre 600 mm au début de la rue de l'Europe, du regard n°639 au regard n°642, puis en diamètre 500 mm sur le reste de la rue, du regard n°642 au regard n°418. Ce diamètre 500 mm est très insuffisant aux vues des surfaces collectées qui sont assez importantes et très imperméabilisées, et des faibles pentes des canalisations. Les réseaux sont donc très fortement saturés.

2.5.2 Variante n°1

2.5.2.1 Aménagement

- Déconnecter la branche de réseau provenant de l'Atlantique et envoyer les eaux de ce secteur dans le bassin de rétention existant de 1500 m³. Pour cela, une canalisation sera donc créée entre le regard n°635 et l'entrée du bassin de rétention existant (regard n°735). Le diamètre préconisé pour la canalisation à créer est de 300 mm.
- Réaménager la buse de fuite en sortie du bassin de rétention existant de 1500 m³, à 3 l/s/ha, soit avec un débit de fuite en sortie de bassin de 8,37 l/s.
- Redimensionner les réseaux situés dans la rue de l'Europe, entre les regards n°642 et n°424. Le diamètre préconisé pour ces canalisations est de 800 mm.
- Redimensionner les réseaux situés en sortie du rond-point, dans le bas de la rue de la Vigne, entre les regards n°424 et n°426. Le diamètre préconisé pour ces canalisations est de 1000 mm.

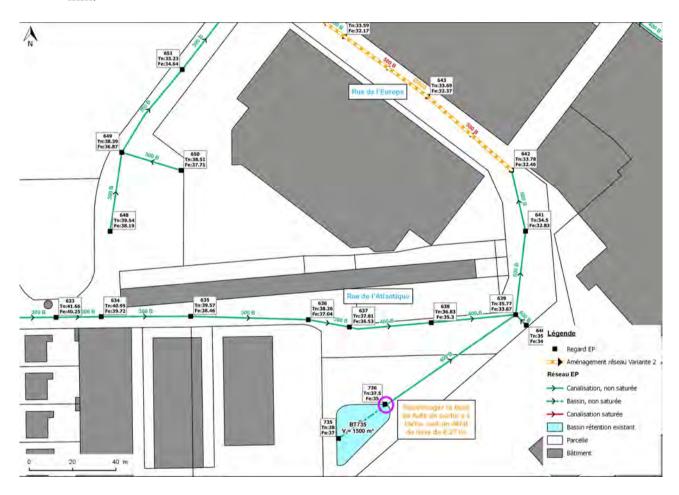
2.5.2.2 Résolution des problèmes hydrauliques

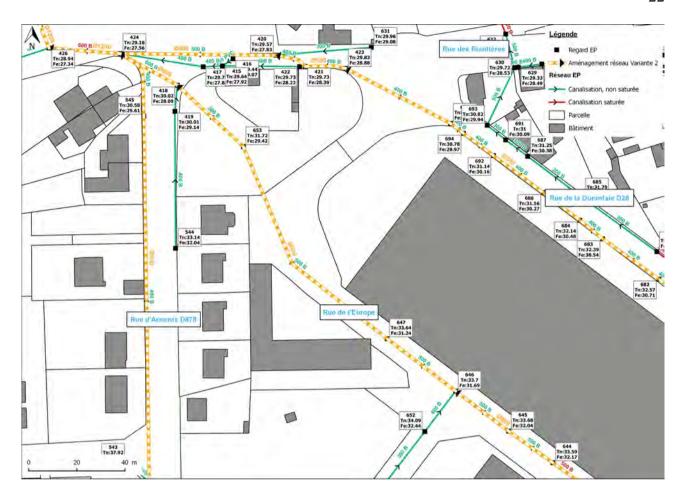
Cet aménagement permettra de tamponner une petite partie des débits du secteur. Cependant, ce sera insuffisant pour éviter la saturation des réseaux en aval ainsi que leur redimensionnement. En effet, la surface de la zone amont pouvant être collectée par l'ouvrage de rétention existant est très faible aux vues des surfaces collectées par les réseaux sur l'ensemble de ce secteur.

2.5.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un abattement des polluants pour une petite partie des eaux transitant dans ce secteur, et un retour vers la nappe d'une partie des eaux stockées.

2.5.2.4 Coût


Tableau 8 : Coût de l'aménagement


Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 300 sous voirie	45	130	5850
Canalisation en 300 sous prairie	58	45	2610
Canalisation en 800 sous voirie	353	300	105900
Canalisation en 1000 sous voirie	30	400	12000
TOTAL			126360

2.5.3 Variante n°2

2.5.3.1 Aménagement

- Réaménager la buse de fuite en sortie du bassin de rétention existant de 1500 m³, à 3 l/s/ha, soit avec un débit de fuite en sortie de bassin de 8,37 l/s.
- Redimensionner les réseaux situés dans la rue de l'Europe, entre les regards n°642 et n°424. Le diamètre préconisé pour ces canalisations est de 800 mm.
- Redimensionner les réseaux situés en sortie du rond-point, dans le bas de la rue de la Vigne, entre les regards n°424 et n°426. Le diamètre préconisé pour ces canalisations est de 1200 mm.

2.5.3.2 <u>Résolution des problèmes hydrauliques</u>

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux sur la zone décrite.

2.5.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.5.3.4 Coût

Tableau 9 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 800 sous voirie	350	300	105000
Canalisation en 1200 sous voirie	30	500	15000
TOTAL			120000

2.5.4 Synthèse des variantes

Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

Variante nº1 Variante n°2 Création canalisation Ø300 mm et envoi des eaux vers bassin, Réaménagement buse de fuite bassin, réaménagement buse de fuite bassin, et redimensionnement canalisations Aménagement proposé Ø800 mm et Ø1200 et redimensionnement canalisations Ø800 mm et Ø1000 120 000.00 € Estimation du coût global 126 360,00 € +++ Efficacité hydraulique +++ Incidence sur le milieu récepteur +++ Pas d'amélioration de la qualité de Inconvénient Connexion au bassin en amont l'eau, et pas de régulation des débits

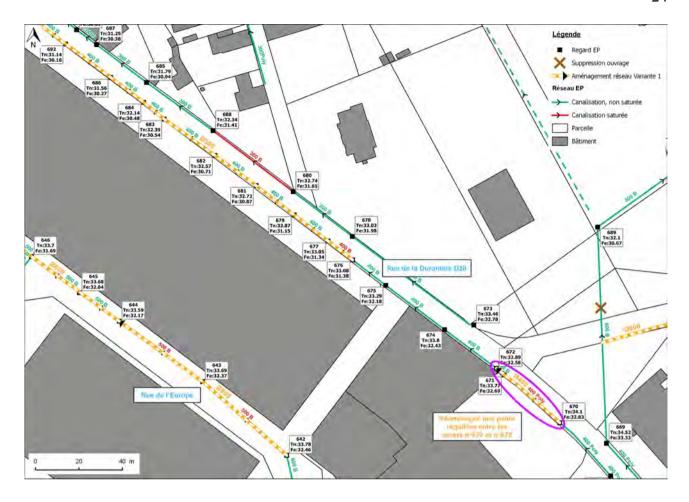
Tableau 10 : Comparatif des aménagements

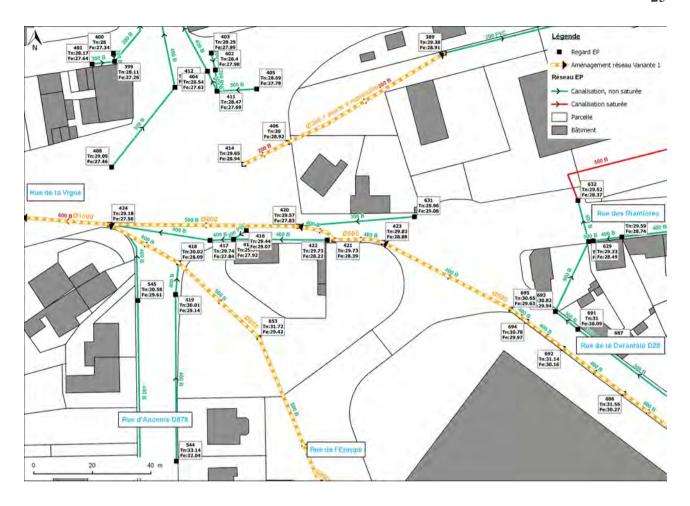
Les deux variantes permettent de résoudre en grande partie les problèmes de saturation des réseaux observés dans ce secteur. La variante n°1 permet également d'améliorer en partie la qualité du rejet des eaux pluviales de cette zone sur le milieu naturel. De plus, cette variante permet de décharger légèrement les réseaux situés en aval, mais ne permet pas d'éviter le redimensionnement de l'ensemble des réseaux situés en aval. Cependant, le bénéfice en terme de gain de qualité physicochimique pour la variante 1 est minime aux vues du surcoût engendré par l'aménagement.

2.6 Problème 5 : Rue de la Durantaie D28 (ZI de l'Erdre)

2.6.1 Situation actuelle

Les réseaux situés dans la rue de la Durantaie sont sous-dimensionnés du côté Sud-Ouest de la rue. En effet, ces canalisations sont en diamètre 400, ce qui est très insuffisant aux vues des surfaces collectées et de la faible pente des canalisations dans la moitié Nord de la rue de la Durantaie.


Les réseaux situés dans la rue de la Durantaie sont donc saturés du fait d'une faible pente des canalisations, mais également du fait des diamètres des canalisations qui sont insuffisants.


2.6.2 Projet d'aménagement

2.6.2.1 Aménagement

La solution proposée consiste à :

- Redimensionner les réseaux situés du côté Sud-Ouest de la rue de la Durantaie, entre les regards n°670 et n°672. Le diamètre préconisé pour ces canalisations est de 400 mm.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°670 et n°672.
- Redimensionner les réseaux situés du côté Sud-Ouest de la rue de la Durantaie, entre les regards n°676 et n°424. Le diamètre préconisé pour ces canalisations est de 500 mm entre les regards n°676 et n°420, et de 600 mm entre les regards n°420 et n°424.

2.6.2.2 <u>Résolution des problèmes hydrauliques</u>

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux dans la rue de la Durantaie, ainsi qu'en aval.

2.6.2.3 Efficacité en termes de dépollution des eaux

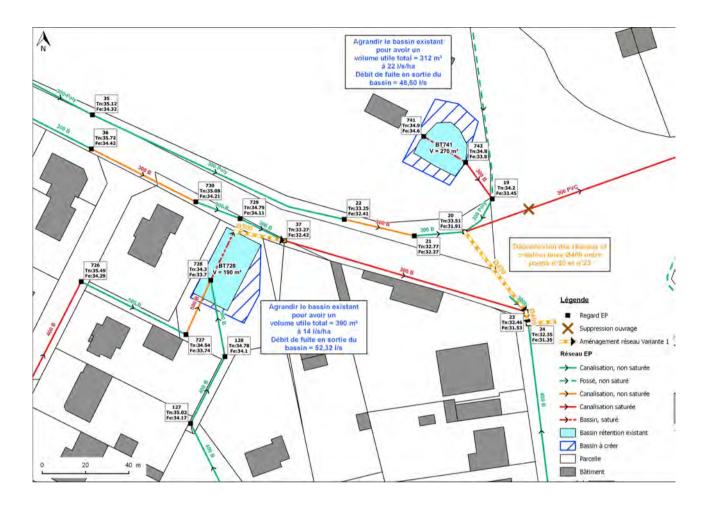
Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

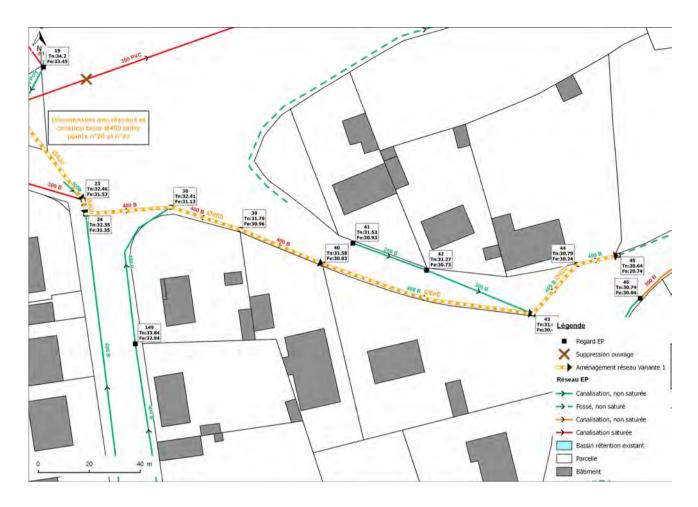
2.6.2.4 Coût

Tableau 11 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 400 sous voirie	39	140	5460
Canalisation en 500 sous voirie	268	150	40200
Canalisation en 600 sous voirie	65	200	13000
TOTAL			58660

2.7 Problème 6 : Rue des Huguenots / Rue des Chardonnerets


2.7.1 Situation actuelle


Les réseaux situés dans la partie basse de la rue des Huguenots et dans la rue des Chardonnerets sont sous-dimensionnés aux vues des surfaces collectées, du taux d'imperméabilisation assez important de la zone et des faibles pentes des canalisations. Les réseaux situés dans la partie basse de la rue des Huguenots sont en diamètre 300 mm, ce qui est très insuffisant. En effet, ces réseaux reçoivent également les eaux issues du lotissement situé au Sud de la rue. Le bassin de rétention du lotissement est sous-dimensionné et ne possède pas de débit de fuite régulé et donc les eaux rejoignent les réseaux de la rue des Huguenots sans régulation des débits. Les réseaux situés en aval, dans la rue des Chardonnerets sont quant-à-eux en diamètre 400 mm, ce qui est également très insuffisant aux vues des débits qui transitent. La canalisation de diamètre 300 mm située sur le rond-point reliant la rue des Huguenots et la rue de Châteaubriant est également insuffisante, et possède une pente très faible. Les réseaux dans ce secteur sont donc fortement saturés.

2.7.2 Variante n°1

2.7.2.1 Aménagement

- Agrandir le bassin de rétention existant du lotissement et mettre en place une régulation en sortie du bassin afin de pouvoir réguler les eaux de l'ensemble du lotissement. Cette solution permet ainsi de décharger fortement les réseaux situés en aval dans la rue des Huguenots et d'éviter ainsi leur redimensionnement. L'ouvrage de rétention devra avoir un volume utile total de 390 m³ (volume existant = environ 190 m³), et être régulé à 14 l/s/ha, soit avoir un débit de fuite en sortie de l'ouvrage de 52,32 l/s.
- Agrandir le bassin de rétention existant du Super U et mettre en place une régulation en sortie du bassin afin de pouvoir réguler les eaux de l'ensemble du site. Cette solution permet ainsi de décharger fortement les réseaux situés en aval. L'ouvrage de rétention devra avoir un volume utile total de 312 m³ (volume existant = environ 270 m³), et être régulé à 22 l/s/ha, soit avoir un débit de fuite en sortie de l'ouvrage de 48,60 l/s.
- Créer une traversée de route entre les regards n°20 et n°23 et ainsi envoyer les eaux issues du site du Super U et de la partie Nord de la rue des Huguenots dans les réseaux situés au Sud de la rue des Huguenots. Cet aménagement permet de décharger la canalisation traversant la rue de Châteaubriant. Le diamètre préconisé pour cette traversée de route est de 400 mm
- Redimensionner les réseaux situés en aval de la rue des Huguenots et dans la rue des Chardonnerets, entre les regards n°23 et n°45. Le diamètre préconisé pour ces canalisations est de 400 mm entre les regards n°23 et n°24, et de 600 mm entre les regards n°24 et n°45.

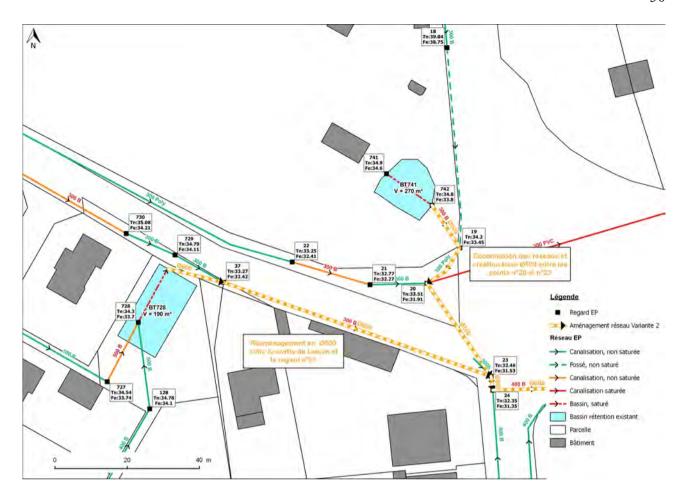
2.7.2.2 Résolution des problèmes hydrauliques

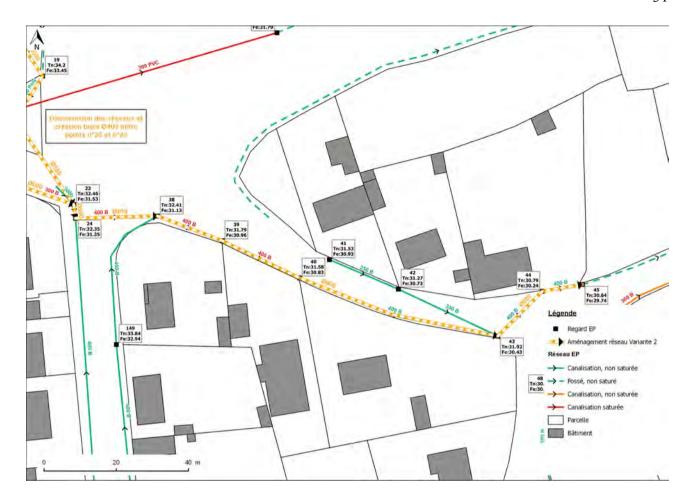
Cet aménagement permettra de tamponner les débits provenant du lotissement et du supermarché. Les débits seront fortement diminués à l'aval et cet aménagement permettra d'éviter la saturation des réseaux situés en aval dans la rue des Huguenots, et de réduire la taille du diamètre nécessaire pour les canalisations à redimensionner dans la rue des Chardonnerets.

2.7.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un abattement important des polluants, et un retour vers la nappe d'une partie des eaux stockées.

2.7.2.4 Coût


Tableau 12 : Coût de l'aménagement


Ouvrage	Longueur (m)	Volume stocké (m³)	P U (€)	PT (€)
Agrandissement du bassin de rétention du lotissement	-	200	60	12000
Agrandissement du bassin de rétention du super U	-	42	60	2520
Canalisation en 300 sous voirie	16	-	130	2080
Canalisation en 400 sous voirie	35	-	140	4900
Canalisation en 600 sous voirie	152		200	30400
TOTAL				51900

2.7.3 <u>Variante n°2</u>

2.7.3.1 Aménagement

- Redimensionner les réseaux situés dans la partie basse de la rue des Huguenots, entre la sortie du bassin de rétention existant et le regard n°23. Le diamètre préconisé pour ces canalisations est de 600 mm.
- Redimensionner les réseaux situés en sortie du bassin de rétention existant du Super U, entre les regards n°742 et n°20. Le diamètre préconisé pour ces canalisations est de 500 mm.
- Créer une traversée de route entre les regards n°20 et n°23 et ainsi envoyer les eaux issues du site du Super U et de la partie Nord de la rue des Huguenots dans les réseaux situés au Sud de la rue des Huguenots. Cet aménagement permet de décharger la canalisation traversant la rue de Châteaubriant. Le diamètre préconisé pour cette traversée de route est de 500 mm.
- Redimensionner les réseaux situés en aval de la rue des Huguenots et dans la rue des Chardonnerets, entre les regards n°23 et n°45. Le diamètre préconisé pour l'ensemble de ces canalisations est de 800 mm entre les regards n°23 et n°45.

2.7.3.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux situés dans la rue des Huguenots et dans la rue des Chardonnerets.

2.7.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.7.3.4 Coût

Tableau 13 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	P U (€)	PT (€)
Canalisation en 500 sous voirie	60	-	150	9000
Canalisation en 600 sous voirie	95	-	200	19000
Canalisation en 800 sous voirie	155		300	46500
TOTAL				74500

2.7.4 Synthèse des variantes

Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

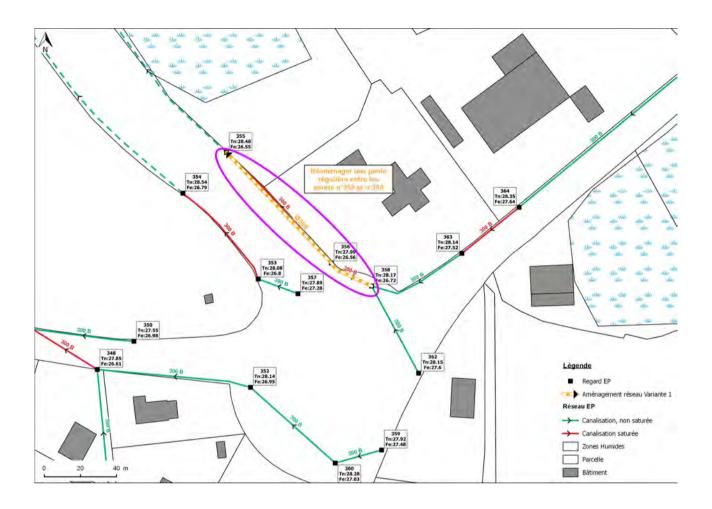
Tableau 14 : Comparatif des aménagements

	Variante n°1	Variante n°2
	Agrandissement des bassins existants : de 200	
	m³ (volume utile total nécessaire = 390 m³)	Redimensionnement du
Aménagement proposé	pour lotissement et 42 m³ (volume utile total	réseau existant Ø500 Ø600
	nécessaire = 312 m³) pour super U, et	mm et Ø800 mm
	redimensionnement canalisations en aval	
Estimation du coût global	51 900,00 €	74 500,00 €
Efficacité hydraulique	+++	+++
Incidence sur le milieu récepteur	+++	+
		Pas d'abaissement
Inconvénient	Terrains privés	supplémentaire des polluants
		+ prix

Les deux variantes permettent de résoudre les problèmes de saturation des réseaux observés dans cette zone. La variante n°1 permet également d'améliorer fortement la qualité du rejet des eaux pluviales de cette zone sur le milieu naturel. De plus, cette variante permet de décharger fortement les réseaux situés en aval, et elle est moins coûteuse que la deuxième.

2.8 Problème 7 : D878A / bas du lieu-dit La Champelière

2.8.1 <u>Situation actuelle</u>


Les réseaux situés le long de la D878A reçoivent une partie des eaux du hameau de la Champelière et de la station-service. Le débit à gérer est important, et il est collecté dans une canalisation de diamètre 300 mm.

Les pentes des canalisations situées au niveau de la D878A, sont très faibles, ce qui entraîne une saturation des réseaux à cet endroit par rapport à la surface collectée. Les réseaux sont donc saturés.

2.8.2 Projet d'aménagement

2.8.2.1 Aménagement

La solution proposée consiste à redimensionner les réseaux situés au niveau de la D878A et du bas du lieu-dit La Champelière, entre les regards n°358 et n°355. Le diamètre préconisé pour ces canalisations est de 500 mm. Une pente régulière sera également réaménagée sur l'ensemble des tronçons situés entre les regards n°358 et n°355.

2.8.2.2 <u>Résolution des problèmes hydrauliques</u>

Cet aménagement permettra d'éviter la saturation des réseaux situés dans cette zone. De plus, l'effet cuvette, lié à des pentes de canalisations trop faibles, sera réduit du fait que la pente des canalisations sera revue.

2.8.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.8.2.4 Coût

Tableau 15 : Coût de l'aménagement

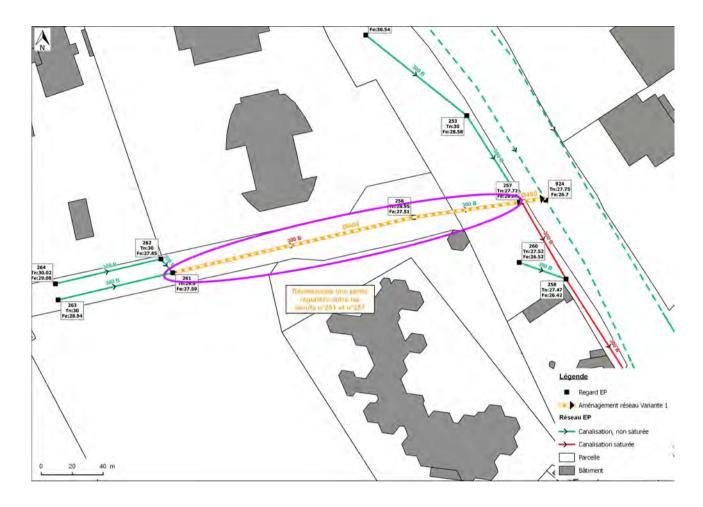
Ouvrage	Longueur (m)	PU (€)	PT (€)
Canalisation en 500 sous voirie	75	150	11250
TOTAL			11250

SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II

2.9 Problème 8 : Boulevard Jules Ferry

2.9.1 Situation actuelle

Les réseaux situés dans la partie basse du parking de l'espace Paul Guimard récoltent tout le haut de l'espace Paul Guimard, le Boulevard Jules Ferry et une partie du collège Louis Pasteur. Cette partie présente une faible pente et est très imperméabilisée. Les pentes des canalisations du Boulevard Jules Ferry sont également très faibles, du fait de la topographie du secteur relativement plane.


Les canalisations présentent un diamètre 300 mm tout le long du réseau du secteur. En aval de ce secteur, les diamètres 300 mm des canalisations sont insuffisants. La capacité de ces canalisations est insuffisante aux vues des surfaces collectées, du fort taux d'imperméabilisation et de la très faible pente des canalisations. Les réseaux sont donc saturés.

2.9.2 Projet d'aménagement

2.9.2.1 Aménagement

La solution proposée consiste à :

- Redimensionner les réseaux situés dans le boulevard Jules Ferry, entre les regards n°261 et n°257. Le diamètre préconisé pour ces canalisations est de 400 mm.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°261 et n°257.
- Créer une nouvelle canalisation pour déconnecter les réseaux provenant du boulevard Jules Ferry, et du haut du parking de l'espace Paul Guimard, et envoyer les eaux directement dans le fossé situé à l'Est, et qui longe la D878A. Cet aménagement permettra de décharger les réseaux situés en aval dans la partie basse du parking de l'espace Paul Guimard. Le diamètre préconisé pour cette canalisation est de 400 mm.

2.9.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter la saturation des réseaux situés dans le Boulevard Jules Ferry. De plus, l'effet cuvette, lié à des pentes de canalisations trop faibles, sera réduit du fait que la pente des canalisations sera revue.

2.9.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.9.2.4 Coût

Tableau 16 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 400 sous voirie	167	140	23380
TOTAL			23380

SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II

2.10 Problème 9 : Rue de la Charlotte

2.10.1 Situation actuelle

Le réseau de la rue de la Charlotte démarre en diamètre 160 mm et 200 mm, puis passe en diamètre 300 mm. C'est un réseau en PVC ancien avec des regards parfois colmatés. Les pentes des canalisations situées dans la rue de la Charlotte, sont très faibles, du fait de la topographie du secteur qui est plane, ce qui entraîne une saturation des réseaux à cet endroit par rapport à la surface collectée. Les réseaux sont donc assez fortement saturés.

2.10.2 Projet d'aménagement

2.10.2.1 Aménagement

La solution proposée consiste à :

- Redimensionner les premiers tronçons des réseaux situés du côté Nord de la rue de la Charlotte, entre les regards n°222 et n°229. Le diamètre préconisé pour ces canalisations est de 300 mm.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°222 et n°229.
- Redimensionner le réseau situé du côté Nord de la rue de la Charlotte, en amont du croisement avec la rue de l'Erdre, entre les regards n°235 et n°237. Le diamètre préconisé pour ces canalisations est de 500 mm.

2.10.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux situés dans la rue de la Charlotte. De plus, l'effet cuvette, lié à des pentes de canalisations trop faibles, sera réduit au niveau de la première partie de la rue, du fait que la pente des canalisations sera revue à cet endroit.

2.10.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

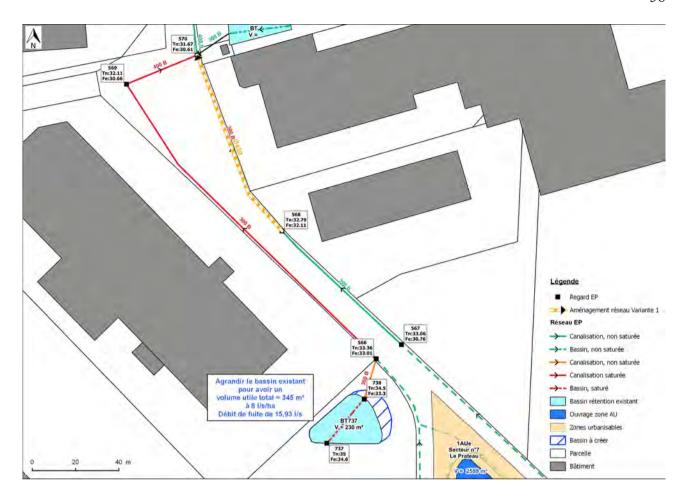
2.10.2.4 Coût

Tableau 17 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 300 sous voirie	45	130	5850
Canalisation en 500 sous voirie	16	150	2400
TOTAL			8250

2.11 Problème 10 : Rue des Riantières Sud (ZI de l'Erdre)

2.11.1 <u>Situation actuelle</u>


Les pentes des canalisations dans la partie Sud de la rue des Riantières sont faibles, voire très faibles, ce qui entraîne un mauvais écoulement des eaux et donc une saturation du réseau à cet endroit. Les canalisations dans la partie Sud de la rue sont en diamètre 300, ce qui est insuffisant vis à vis de la faible pente des canalisations, et des surfaces collectées qui sont très imperméabilisées. Un bassin de rétention est présent sur le parking situé au Sud de la rue des Riantières. Il collecte les eaux du parking avant leur rejet dans les réseaux, cependant son volume est insuffisant aux vues des surfaces collectées et il n'y a pas de régulateur de débit de fuite en sortie de l'ouvrage. Les débits ne sont donc pas suffisamment tamponnés dans l'ouvrage et les réseaux en aval sont saturés.

2.11.2 *Variante n°1*

2.11.2.1 Aménagement

Dans cette variante, la solution proposée consiste à :

- Agrandir le bassin de rétention existant du parking et mettre en place une régulation en sortie du bassin afin de pouvoir réguler les eaux de l'ensemble du parking. Cette solution permet ainsi de décharger fortement les réseaux situés en aval dans la rue des Riantitières et d'éviter ainsi leur redimensionnement. L'ouvrage de rétention devra avoir un volume utile total de 345 m³ (volume existant = environ 230 m³), et être régulé à 8 l/s/ha, pour atteindre un débit de fuite en sortie de l'ouvrage de 15,93 l/s.
- Redimensionner les réseaux situés du côté Est de la partie Sud de la rue des Riantières, entre les regards n°568 et n°570. Le diamètre préconisé pour ces canalisations est de 400 mm.

2.11.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra de tamponner les débits provenant du parking. Les débits seront fortement diminués à l'aval et cet aménagement permettra d'éviter la saturation des réseaux situés en aval, dans la rue des Riantières, et ainsi d'éviter leur redimensionnement.

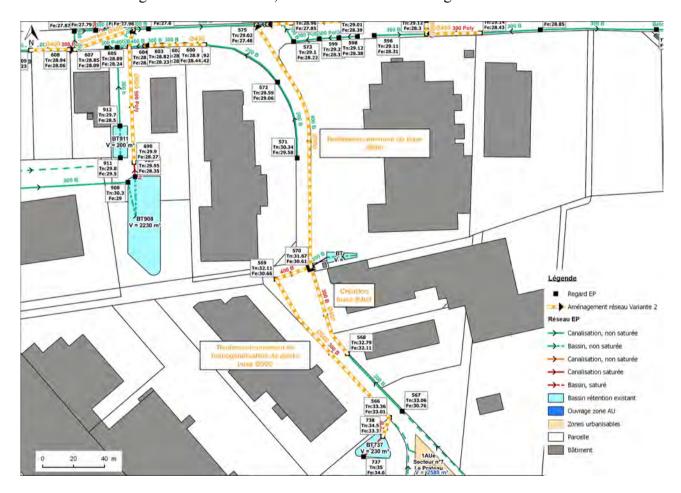
2.11.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un abattement important des polluants, et un retour vers la nappe d'une partie des eaux stockées.

2.11.2.4 Coût

Tableau 18 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	PU (€)	PT (€)
Agrandissement du bassin de rétention	-	115	60	6900
Canalisation en 400 sous voirie	62	-	140	8680
TOTAL				15580


SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II
-------------------	---

2.11.3 Variante n°2

2.11.3.1 Aménagement

Dans cette variante, la solution proposée consiste à :

- Redimensionner les réseaux situés du côté Ouest de la partie Sud de la rue des Riantières, entre les regards n°738 et n°570. Le diamètre préconisé pour ces canalisations est de 500 mm
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°738 et n°570
- Redimensionner les réseaux situés du côté Est de la partie Sud de la rue des Riantières, entre les regards n°568 et n°575. Le diamètre préconisé pour ces canalisations est de 400 mm entre les regards n°568 et n°570, et de 500 mm entre les regards n°570 et n°575.

2.11.3.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux de cette zone, mais nécessite le redimensionnement de l'intégralité des réseaux situés dans ce secteur.

2.11.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.11.3.4 Coût

Tableau 19 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	PU (€)	PT (€)
Canalisation en 400 sous voirie	60	-	140	8400
Canalisation en 500 sous voirie	320	-	150	48000
TOTAL				56400

2.11.4 <u>Synthèse des variantes</u>

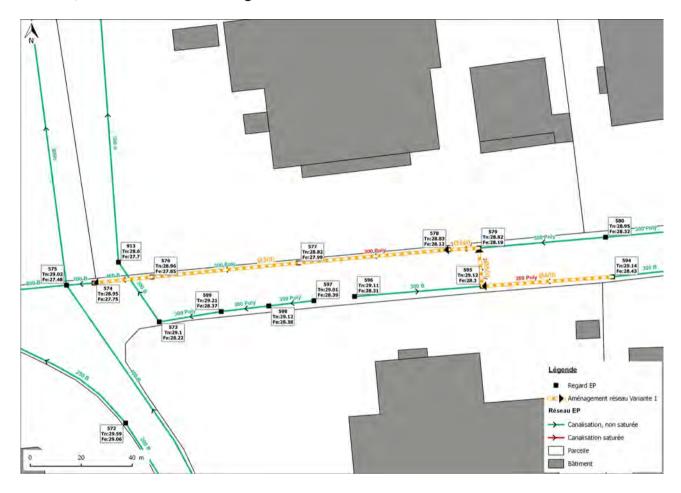
Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

Tableau 20 : Comparatif des aménagements

	Variante n°1	Variante n°2
Aménagement proposé	Agrandissement du bassin de rétention existant de 115 m³ (volume utile total nécessaire = 345 m³) et redimensionnement canalisation en Ø400 mm	Redimensionnement du réseau existant Ø400 mm et Ø800 mm
Estimation du coût global	15 580,00 €	56 400,00 €
Efficacité hydraulique	+++	+++
Incidence sur le milieu récepteur	+++	+
Inconvénient	Terrain et ouvrage privé	Pas d'abaissement supplémentaire des polluants + prix

Les deux variantes permettent de résoudre les problèmes de saturation des réseaux observés dans la rue des Riantières Sud. La variante n°1 permet de réguler et de décharger les réseaux situés en aval, et ainsi d'éviter leur redimensionnement. Elle permet également d'améliorer la qualité du rejet des eaux pluviales de cette zone sur le milieu naturel. De plus, elle est bien moins coûteuse que la deuxième.

2.12 Problème 11 : ZI Est rue des Riantières (ZI de l'Erdre)


2.12.1 Situation actuelle

La rue à l'Est de la rue des Riantières est située dans une zone topographiquement plane et les pentes des canalisations sont très faibles dans ce secteur. De plus, les canalisations situées dans cette rue sont en diamètre 300 mm, ce qui est très insuffisant du fait de la faible pente des canalisations et des surfaces collectées qui sont très imperméabilisées. Ceci entraîne une forte saturation des réseaux dans ce secteur.

2.12.2 Projet d'aménagement

2.12.2.1 Aménagement

La solution proposée consiste à redimensionner les réseaux situés dans cette rue, entre les regards n°594 et n°574. Le diamètre préconisé pour ces canalisations est de 400 mm entre les regards n°594 et n°595, et de 500 mm entre les regards n°595 et n°574.

2.12.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux sur la zone décrite.

2.12.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

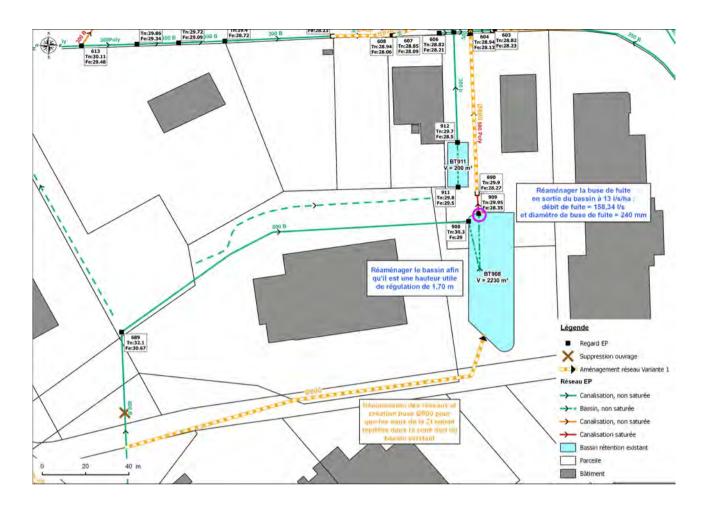
2.12.2.4 Coût

Tableau 21 : Coût de l'aménagement

Ouvrage	Longueur (m)	PU (€)	PT (€)
Canalisation en 400 sous voirie	35	140	4900
Canalisation en 500 sous voirie	113	150	16950
TOTAL			21850

2.13 Problème 12 : ZI grand bassin (ZI de l'Erdre)

2.13.1 Situation actuelle


Ce secteur est situé dans une zone topographiquement plane et les pentes des canalisations y sont faibles. Une bonne partie des eaux de la ZI de l'Erdre sont collectées dans l'ouvrage de rétention existant de 2230 m³, situé à l'Est de la société SOFRIGO. Du fait de son aménagement actuel, cet ouvrage de rétention ne joue pas son rôle de régulation des débits et les eaux transitent presque directement dans les réseaux situés en aval. En effet, la position des buses d'entrée et de sortie de l'ouvrage de rétention et l'absence d'un régulateur de fuite en sortie de l'ouvrage, ne permettent pas à ce dernier de jouer son rôle de bassin tampon. Aux vues des surfaces collectées qui sont importantes et des pentes des canalisations qui sont très faibles en aval de cet ouvrage, les réseaux se retrouvent fortement sous-dimensionnés et sont donc saturés dans ce secteur.

2.13.2 Variante n°1

2.13.2.1 Aménagement

Dans cette variante, la solution proposée consiste à :

- Déconnecter la branche de réseau de la ZI alimentant le bassin de rétention existant, et provenant de la rue de la Durantaie, pour envoyer les eaux dans la zone Sud du bassin de rétention existant. Pour cela, une canalisation sera donc créée entre le regard n°669 et la zone Sud du bassin de rétention existant (futur point d'entrée de ce bassin). Le diamètre préconisé pour la canalisation à créer est de 800 mm.
- Réaménager le bassin de rétention existant afin qu'il ait une hauteur utile de régulation de 1,70 m.
- Réaménager la buse de fuite en sortie du bassin de rétention à 13 l/s/ha, soit avec un débit de fuite en sortie de bassin de 158,34 l/s, et un diamètre de buse de fuite de 240 mm.
- Redimensionner les réseaux situés en aval du bassin de rétention existant, entre les regards n°690 et n°604. Le diamètre préconisé pour ces canalisations est de 600 mm.

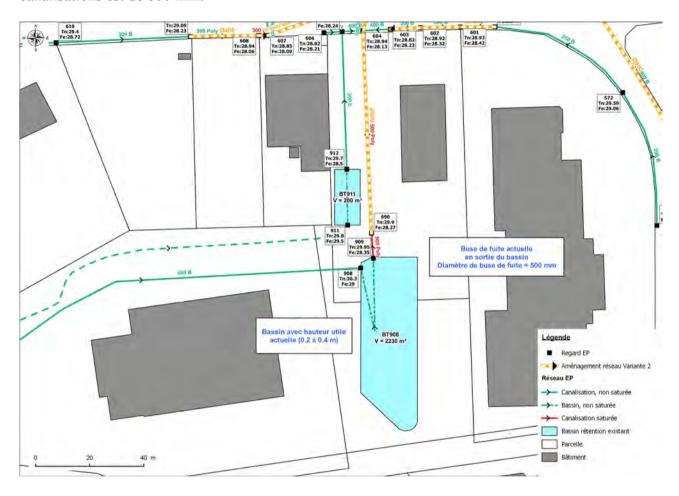
2.13.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra au bassin de rétention existant de jouer son rôle de rétention et de régulation des débits. Il permettra ainsi de tamponner les débits provenant de la partie amont de cette zone. Les débits seront donc fortement diminués en aval de l'ouvrage existant et cet aménagement permettra d'éviter la saturation des réseaux sur cette zone.

2.13.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un abattement important des polluants, et un retour vers la nappe d'une partie des eaux stockées.

2.13.2.4 Coût


Tableau 22 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 600 sous voirie	75	200	15000
Canalisation en 800 sous voirie	183	300	54900
TOTAL			69900

2.13.3 Variante n°2

2.13.3.1 Aménagement

Dans cette variante, la solution proposée consiste à redimensionner les réseaux situés en aval du bassin de rétention existant, entre les regards n°909 et n°620. Le diamètre préconisé pour ces canalisations est de 800 mm.

2.13.3.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en partie la saturation des réseaux sur la zone décrite, mais ne permettra pas du tout de réguler les débits.

2.13.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.13.3.4 Coût

Tableau 23 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 800 sous voirie	85	300	25500
TOTAL			25500

2.13.4 Synthèse des variantes

Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

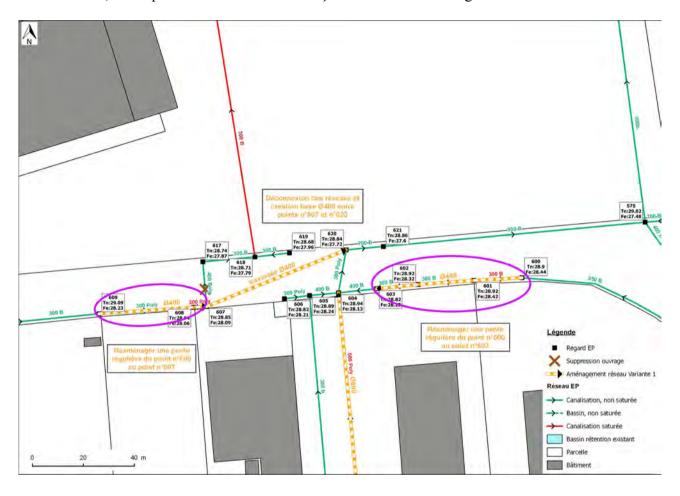
Tableau 24 : Comparatif des aménagements

	Variante n°1	Variante n°2
	Création canalisation Ø800 mm,	
A	redimensionnement canalisation Ø600	Redimensionnement canalisation
Aménagement proposé	mm et réaménagement hauteur utile	Ø800 mm
	bassin et buse de fuite	
Estimation du coût global	69 900,00 €	25 500,00 €
Efficacité hydraulique	+++	++
Incidence sur le milieu récepteur	+++	+
Inconvénient	Terrain privés	Risque de mise en charge du réseau amont

Les deux variantes permettent de résoudre, au moins en partie, les problèmes de saturation des réseaux observés dans cette zone. En effet, la variante 2 permet de limiter les problèmes de saturation dans cette zone, mais ne permet pas de les résoudre totalement aux vues des débits très importants qui transitent dans ce secteur, et qui ne sont pas du tout régulés par cette variante. À l'inverse, la variante n°1 permet de décharger les réseaux en aval tout en améliorant la qualité du rejet vers la milieu naturel. Elle est bien plus efficace que la variante n°2, cependant, elle est également plus coûteuse.

2.14 Problème 13 : Rue des Riantières (ZI de l'Erdre)

2.14.1 Situation actuelle


La rue des Riantières est située dans une zone topographiquement plane et les pentes des canalisations sont très faibles dans ce secteur. De plus, les canalisations situées dans cette rue sont en diamètre 300 mm, ce qui est très insuffisant du fait de la faible pente des canalisations et des surfaces collectées qui sont très imperméabilisées. Ceci entraîne une saturation des réseaux dans ce secteur.

2.14.2 Projet d'aménagement

2.14.2.1 Aménagement

Déconnecter les réseaux en créant une traversée de route entre les réseaux situés sur la partie Sud-Ouest de la rue des Riantières et ceux situés sur la partie Nord-Est de cette même rue, soit entre les regard n°607 et n°620. Cet aménagement permettra de décharger les réseaux

- situés sur les terrains de l'entreprise AGERA, entre les regards n°618 et n°375, et ainsi d'éviter leur redimensionnement. Le diamètre préconisé pour cette canalisation est de 400 mm.
- Redimensionner les réseaux situés sur le côté Sud de la rue des Riantières, entre les regards n°609 et n°607, et entre les regards n° 600 et n°603. Le diamètre préconisé pour l'ensemble de ces canalisations est de 400 mm.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°609 et n°607, ainsi que sur l'ensemble des tronçons situés entre les regards n°600 et n°603.

2.14.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra de décharger les réseaux situés entre les regards n°618 et n°375 et ainsi d'éviter leur saturation. Il permettra également d'éviter en grande partie la saturation des réseaux situés dans la rue des Riantières. De plus, l'effet cuvette, lié à des pentes de canalisations trop faibles, sera réduit du fait des pentes revues entre les regards n°609 et n°607 et entre les regards n°600 et n°603.

2.14.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

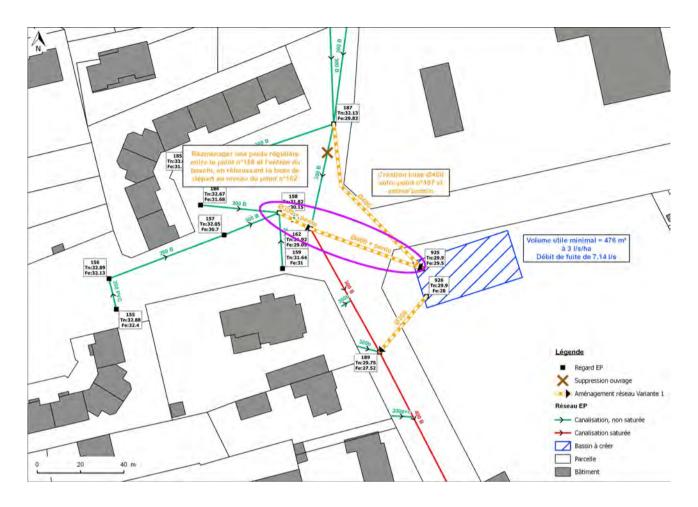
2.14.2.4 Coût

Tableau 25 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 400 sous voirie	108	140	15120
TOTAL			15120

2.15 Problème 14 : Boulevard de la Haie Daniel

2.15.1 Situation actuelle


Les réseaux situés dans le boulevard de la Haie Daniel collectent toute la longueur du boulevard, la partie ouest du boulevard Jules Ferry et les espaces construits environnants. Le boulevard de la Haie Daniel comprend des canalisations de diamètre 300 mm puis de diamètre 400 mm. Les pentes des canalisations du bas du boulevard sont faibles du fait de la topographie du secteur qui est assez plane. Aux vues des surfaces importantes collectées, les réseaux sont sous-dimensionnés et donc saturés.

2.15.2 *Variante n°1*

2.15.2.1 Aménagement

Dans cette variante, la solution proposée consiste à :

- Mettre en place un ouvrage de rétention aérien, de type noue enherbée, sur la zone située au Nord du terrain de foot et qui est en espace vert, pour réguler les débits provenant de la partie haute du boulevard de la Haie Daniel. Cette solution permet de décharger fortement les réseaux situés en aval dans la rue de la Haie Daniel et d'éviter ainsi leur redimensionnement. L'ouvrage de rétention aura un volume de 476 m³, et un débit de fuite en sortie de l'ouvrage de 7,14 l/s. Cet ouvrage est régulé à 3 l/s/ha.
- Déconnecter la branche de réseau provenant de la partie haute du boulevard de la Haie Daniel et envoyer les eaux de ce secteur dans le bassin de rétention qui sera créé. Pour cela, une canalisation sera donc créée entre le regard n°187 et l'entrée du futur bassin de rétention (point n°925 qui sera créé en entrée de bassin). Le diamètre préconisé pour la canalisation à créer est de 400 mm.
- Déconnecter la branche de réseau provenant du côté Ouest du boulevard Jules Ferry et envoyer les eaux de ce secteur dans le bassin de rétention qui sera créé. Pour cela, une canalisation sera donc créée entre le regard n°162 et l'entrée du futur bassin de rétention (point n°925 qui sera créé en entrée de bassin). Le diamètre préconisé pour la canalisation à créer est de 400 mm.
- Réaménager une pente régulière entre le point n°158 et l'entrée du bassin de rétention, en rehaussant la buse de départ au niveau du point n°162.
- Créer une canalisation entre la sortie de l'ouvrage de rétention (point n°926 qui sera créé en sortie de bassin) et le regard n°189, permettant de renvoyer les eaux régulées en sortie de bassin dans le réseau EP existant.

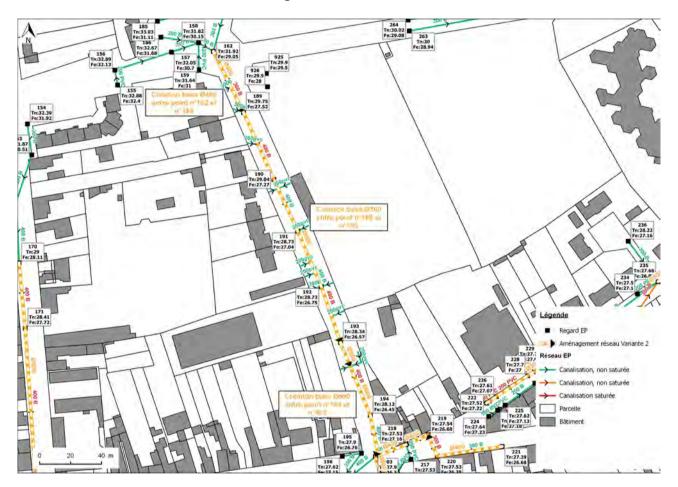
2.15.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra de tamponner les débits provenant de la partie haute du boulevard de la Haie Daniel. Les débits seront fortement diminués à l'aval et cet aménagement permettra d'éviter la saturation des réseaux situés en aval, dans le boulevard de la Haie Daniel, et d'éviter ainsi le redimensionnement des réseaux dans ce boulevard.

2.15.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un abattement important des polluants, et un retour vers la nappe d'une partie des eaux stockées.

2.15.2.4 Coût


Tableau 26 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	P U (€)	PT (€)
Création d'un bassin de rétention	-	476	60	28560
Canalisation en 300 sous voirie	93	-	130	12090
Canalisation en 400 sous voirie	34	-	140	4760
TOTAL				45410

2.15.3 **Variante n°2**

2.15.3.1 Aménagement

Dans cette variante, la solution proposée consiste à redimensionner l'ensemble des réseaux situés dans le boulevard de la Haie Daniel, entre les regards n°162 et n°903. Le diamètre préconisé pour ces canalisations est de 400 mm entre les regards n°162 et n°189, de 500 mm entre les regards n°189 et n°193, et de 600 mm entre les regards n°193 et n°903.

2.15.3.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux de cette zone.

2.15.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.15.3.4 Coût

Tableau 27 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	P U (€)	PT (€)
Canalisation en 400 sous voirie	40	-	140	5600
Canalisation en 500 sous voirie	180	-	150	27000
Canalisation en 600 sous voirie	60	-	200	12000
TOTAL				44600

2.15.4 Synthèse des variantes

Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

Tableau 28 : Comparatif des aménagements

	Variante n°1	Variante n°2
Aménagement proposé	Déconnexion des réseaux et création d'un bassin de rétention de 476 m³	Redimensionnement du réseau existant en Ø400 mm, Ø500 mm et Ø600 mm
Estimation du coût global	45 410,00 €	44 600,00 €
Efficacité hydraulique	+++	+++
Incidence sur le milieu récepteur	+++	+
Inconvénient	Disponibilité du foncier	Pas d'abaissement supplémentaire des polluants + augmentation des débits en aval

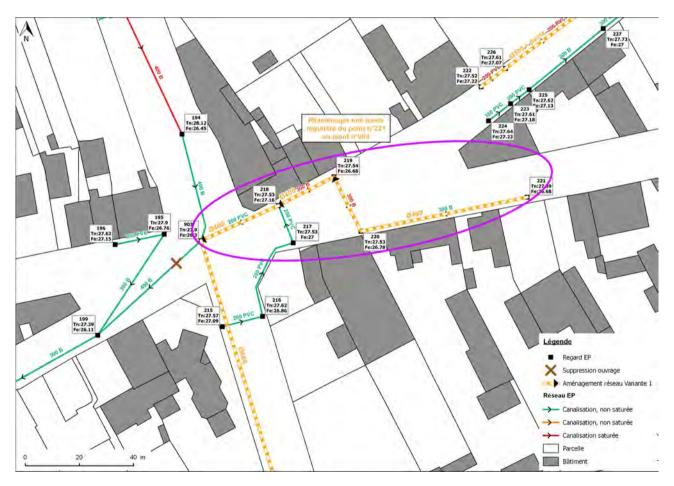
Les deux variantes permettent de résoudre les problèmes de saturation des réseaux observés dans le boulevard de la Haie Daniel. La variante n°1 permet également d'améliorer la qualité du rejet des eaux pluviales de cette zone sur le milieu naturel. De plus, cette variante permet de décharger fortement les réseaux situés en aval, et d'éviter le redimensionnement des réseaux situés dans le boulevard de la Haie Daniel

2.16 Problème 15: Rue du Clos / D33

2.16.1 Situation actuelle

La présence d'eau stagnante après des épisodes pluvieux, même modérés, ont été signalés dans le bas de la rue des Dureaux (D33). La quasi-intégralité de la rue des Dureaux, côté Ouest de l'Erdre est collectée en aval par le regard n°221. Il se situe au point bas de la rue des Dureaux, qui présente un effet de cuvette. La canalisation est en diamètre 300 mm, ce qui est insuffisant aux vues des surfaces collectées et de sa position topographique (effet de cuvette). Les pentes des canalisations du secteur sont faibles, du fait de la topographie qui est plane. Les réseaux sont donc fortement saturés.

Les réseaux du secteur de la rue du Clos et de la rue du Lavoir, reçoivent les eaux du boulevard de la haie Daniel, de la rue du Clos, de la rue d'Anjou, de la rue du Lavoir, de la rue de l'Industrie, de la place du Commerce et de la rue Neuve. La surface collectée et les taux d'imperméabilisation sont importants.


SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II

Les débits à gérer sont donc très importants et les diamètres des canalisations dans ce secteur sont insuffisants. De plus, ces canalisations présentent une pente faible, du fait de la topographie du secteur. Les réseaux sont donc fortement saturés dans ce secteur.

2.16.2 Variante n°1

2.16.2.1 Aménagement

- Redimensionner les réseaux situés au niveau de la D33, entre les regards n°221 et n°903, et réaménager une pente régulière sur l'ensemble de ces tronçons. Le diamètre préconisé pour l'ensemble de ces canalisations est de 400 mm.
- Déconnecter les réseaux provenant du boulevard de la Haie Daniel de ceux de la rue du Clos. Pour cela, une canalisation sera créée dans la rue Neuve, et elle permettra d'envoyer les eaux provenant du boulevard de la Haie Daniel directement dans le plan d'eau, en suivant la pente naturelle des terrains. La canalisation sera créée entre le regard n°903 et le plan d'eau. Cet aménagement permettra de décharger fortement les réseaux situés dans la rue du Clos et dans la rue du Lavoir, et ainsi d'éviter leur redimensionnement. Le diamètre préconisé pour cette canalisation est de 600 mm.

2.16.2.2 Résolution des problèmes hydrauliques

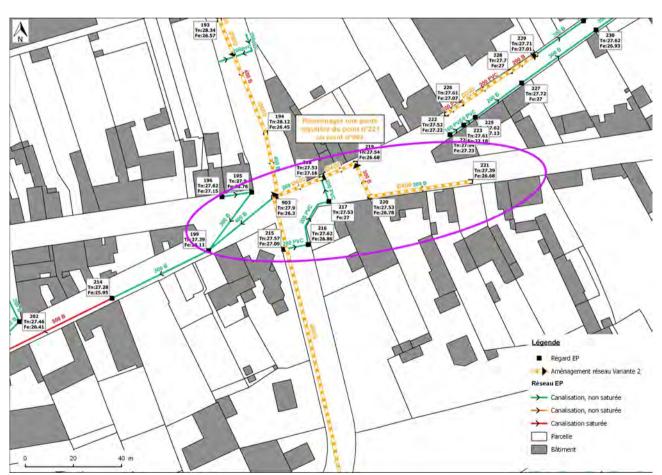
Cet aménagement permettra d'éviter en grande partie la saturation des réseaux dans ce secteur. Il permettra également de décharger les réseaux situés dans la rue du Clos et dans la rue du Lavoir, et ainsi d'éviter leur saturation. De plus, l'effet cuvette lié à des pentes de canalisations trop faibles dans la rue des Dureaux, sera réduit du fait que la pente des canalisations sera revue entre les regards n°221 et n°903.

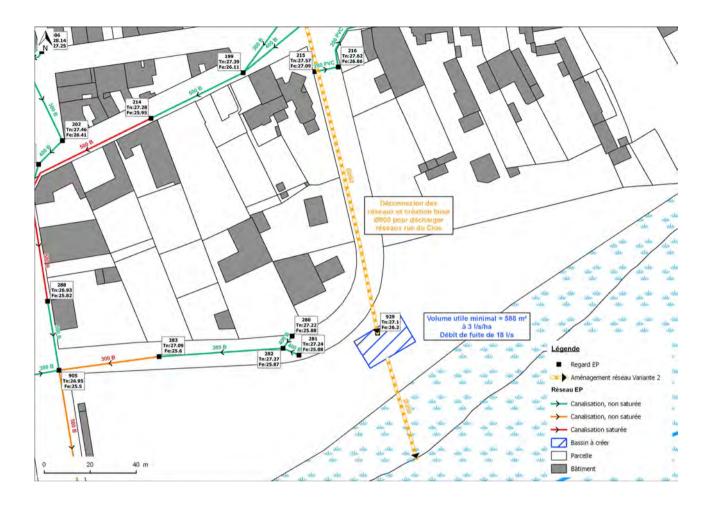
2.16.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.16.2.4 Coût

Tableau 29 : Coût de l'aménagement


Ouvrage	Longueur (m)	PU (€)	PT (€)
Canalisation en 400 sous voirie	95	140	13300
Canalisation en 600 sous voirie	128	200	25600
Canalisation en 600 sous prairie	70	100	7000
TOTAL			45900


SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II
-------------------	---

2.16.3 Variante n°2

2.16.3.1 Aménagement

- Redimensionner les réseaux situés au niveau de la D33, entre les regards n°221 et n°903, et réaménager une pente régulière sur l'ensemble de ces tronçons. Le diamètre préconisé pour l'ensemble de ces canalisations est de 400 mm.
- Déconnecter les réseaux provenant du boulevard de la Haie Daniel de ceux de la rue du Clos. Pour cela, une canalisation sera créée dans la rue Neuve, et elle permettra d'envoyer les eaux provenant du boulevard de la Haie Daniel en direction du plan d'eau, en suivant la pente naturelle des terrains. La canalisation sera créée entre le regard n°903 et l'entrée d'un ouvrage de rétention (point n°929 qui sera créé en entrée de bassin), qui sera créé en amont du plan d'eau. Cet déconnexion des réseaux permettra de décharger fortement les réseaux situés dans la rue du Clos et dans la rue du Lavoir, et ainsi d'éviter leur redimensionnement. Le diamètre préconisé pour cette canalisation est de 800 mm.
- Mettre en place un ouvrage de rétention aérien, de type noue enherbée, sur la zone en espace vert située entre la rue Neuve et le plan d'eau, afin d'améliorer la qualité des eaux de cette zone avant rejet dans le milieu naturel. L'ouvrage de rétention aura un volume de 588 m³, et un débit de fuite en sortie de l'ouvrage de 18 l/s. Cet ouvrage est régulé à 3 l/s/ha.

2.16.3.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux dans ce secteur. Il permettra également de décharger les réseaux situés dans la rue du Clos et dans la rue du Lavoir, et ainsi d'éviter leur saturation. De plus, l'effet cuvette lié à des pentes de canalisations trop faibles dans la rue des Dureaux, sera réduit du fait que la pente des canalisations sera revue entre les regards n°221 et n°903. Cet aménagement permettra également de tamponner les débits provenant de ce secteur avant rejet dans le milieu naturel. L'ouvrage ne permettra pas de décharger les réseaux vu qu'il se trouve à l'exutoire de ceux-ci. Cependant, il permettra d'améliorer nettement la qualité des eaux avant rejet.

2.16.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un abattement important des polluants pour l'ensemble des eaux collectées dans cette zone, et un retour vers la nappe d'une partie des eaux stockées.

2.16.3.4 Coût

Tableau 30 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	PU (€)	PT (€)
Création d'un bassin de rétention	-	588	60	35280
Canalisation en 400 sous voirie	95	-	140	13300
Canalisation en 800 sous voirie	128	-	300	38400
Canalisation en 800 sous prairie	57	-	150	8550
TOTAL				95530

2.16.4 Synthèse des variantes

Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

Tableau 31 : Comparatif des aménagements

	Variante n°1	Variante n°2			
Aménagement proposé	Redimensionnement et réaménagement de la pente des réseaux (Ø400 mm), et déconnexion des réseaux avec création nouvelle canalisation (Ø600 mm) jusqu'à l'étang	Redimensionnement et réaménagement de la pente des réseaux (Ø400), déconnexion des réseaux avec création nouvelle canalisation (Ø800 mm) jusqu'à l'étang, et création bassin de 588 m³			
Estimation du coût global	45900	95530			
Efficacité hydraulique	+++	+++			
Incidence sur le milieu récepteur	+	+++			
Inconvénient	Pas d'abaissement supplémentaire des polluants	Prix (bassin lit majeur de l'Erdre)			

Les deux variantes permettent de résoudre en grande partie les problèmes de saturation des réseaux observés dans ce secteur. La variante n°2 permet, en plus, d'améliorer fortement la qualité du rejet des eaux pluviales de cette zone sur le milieu naturel. Cependant, la variante n°2 est presque deux fois plus chère que la variante n°1.

2.17 Problème 16 : Centre bourg

2.17.1 Situation actuelle

Les réseaux situés dans la rue du Château reçoivent une partie des eaux de la rue du Château, de la rue du Midi, et du boulevard Alsace-Lorraine. La partie Ouest de la rue du Château a une topographie plane. Elle est collectée par des canalisations en diamètre 250 mm (regard n°325) puis en diamètre 300 mm (regards n°322 à n°320). Ces diamètres sont insuffisants aux vues des surfaces collectées et du taux d'imperméabilisation très important du secteur. Les pentes des canalisations du

SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II

secteur, sont globalement faibles, ce qui entraîne une saturation des réseaux à cet endroit par rapport à la surface collectée.

Les réseaux situés dans la partie basse de l'avenue Charles Henri de Cossé Brissac reçoivent une partie des eaux de la rue du 1^{er} bataillon, les eaux du boulevard Alsace-Lorraine, de la rue du Midi et de la rue du Château, ainsi qu'une partie des eaux de l'avenue Charles Henri de Cossé Brissac. Dans la partie basse de cette avenue ainsi qu'en aval, la topographie de la zone est assez plane et les pentes des canalisations sont assez faibles. Le bas de l'avenue est collecté par des canalisations en diamètre 400 mm, jusqu'au croisement avec la rue du Château, puis ensuite par des canalisations en diamètre 500 mm dans le reste de l'avenue. Ces diamètres sont très insuffisants aux vues des surfaces très importantes collectées en amont. La pente des canalisations entre les regards n°182 et n°296 (fin de l'avenue Charles Henri de Cossé Brissac) est très faible, du fait de la topographie assez plane du secteur. Les réseaux sont donc fortement saturés sur cette zone.

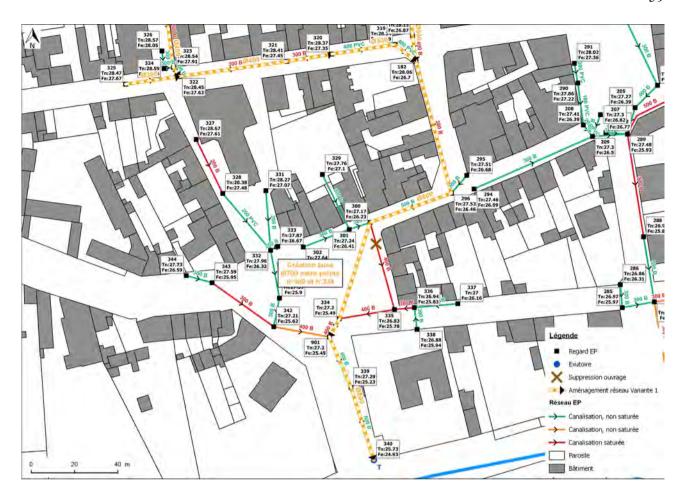
Le secteur situé au Sud du centre bourg, au niveau du rond-point reliant la rue de l'Industrie, la rue Neuve et le boulevard de la Ferronnays, collecte une grande partie des eaux du centre bourg (au niveau de l'avenue de Charles Henri de Cossé Brissac, le boulevard de la Ferronays, la rue du Château, la rue du Midi, la place de l'église, une partie du boulevard Alsace Lorraine et la rue Neuve). Les rues de ce secteur présentent une topographie plane et le débit à gérer est très important.

Au niveau du bas de l'avenue de Cossé Brissac, le débit est collecté par une canalisation en diamètre 500 mm (regards n°182 à n°300), puis par des canalisations en diamètre 400 mm (regards n°300 à n°901). La capacité de ces canalisations est très insuffisante aux vues des surfaces collectées, et de la forte imperméabilisation du centre bourg. De plus, les pentes de ces canalisations restent faibles du fait de la topographie du secteur qui est assez plane. Au niveau du boulevard de la Ferronays, les eaux sont collectées par le regard n°344 qui présente une canalisation de diamètre 300 mm. Aux vues des surfaces collectées, le diamètre 300 mm est également insuffisant.

Les réseaux sont donc fortement saturés sur l'ensemble de ce secteur du centre bourg.

2.17.2 Projet d'aménagement

2.17.2.1 Aménagement


La solution proposée consiste à :

- Redimensionner les réseaux situés dans le bas du boulevard Alsace-Lorraine et dans la rue du Château, entre les regards n°325 et n°322 et entre les regards n°114 et n°182. Le diamètre préconisé pour ces canalisations est de 300 mm entre les regards n°325 et n°322, de 400 mm entre les regards n°114 et n°320, et de 500 mm entre les regards n°320 et n°182.
- Redimensionner les réseaux situés dans la partie basse de l'avenue Charles Henri de Cossé Brissac, entre les regards n°170 et n°296. Le diamètre préconisé pour ces canalisations est de 500 mm entre les regards n°170 et n°182, et de 800 mm entre les regards n°182 et n°296.
- Redimensionner les réseaux situés en aval de ceux-ci, dans la partie Sud du centre bourg, entre les regards n°296 et n°340. Le diamètre préconisé pour ces canalisations est de 800 mm.

Créer une canalisation au niveau du parking existant, entre les regards n°300 et n°334, afin d'éviter le redimensionnement des tronçons n°300 à n°335 et n°335 à n°334. Le diamètre préconisé pour cette canalisation est de 800 mm.

2.17.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux situés dans la zone du centre bourg. Cependant, une partie de ces aménagements est située dans des zones régulièrement inondées par les crues de l'Erdre. Cet aménagement sera donc adapté en fonction du degré d'inondabilité des secteurs du bourg dans le dossier de phase III, correspondant au Schéma Directeur.

2.17.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.17.2.4 Coût

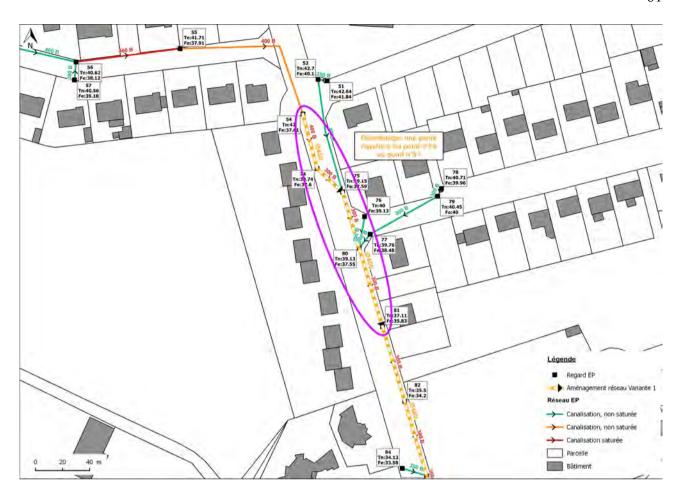
Tableau 32 : Coût de l'aménagement

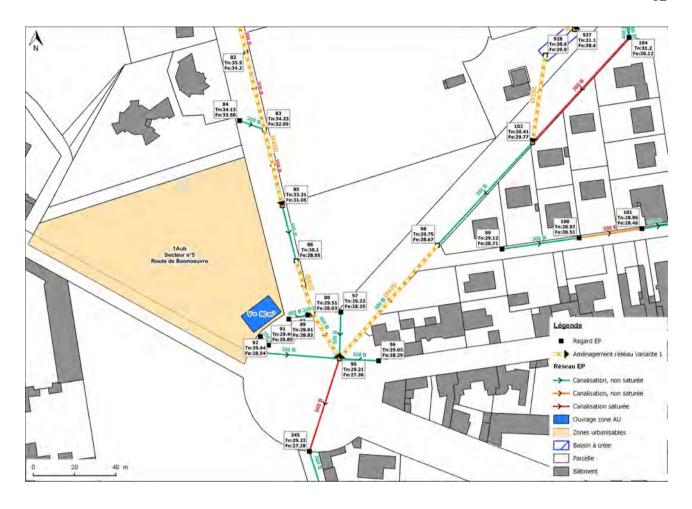
Ouvrage	Longueur (m)	PU (€)	PT (€)
Canalisation en 300 sous voirie	25	130	3250
Canalisation en 400 sous voirie	112	140	15680
Canalisation en 500 sous voirie	209	150	31350
Canalisation en 800 sous voirie	220	300	66000
TOTAL			116280

2.18 Problème 17 : Rue des Platanes partie Sud

2.18.1 Situation actuelle

Les réseaux situés dans la partie basse de la rue des Platanes reçoivent les eaux de la rue des Hêtres, de la rue des Chênes, de la rue des Érables, ainsi qu'une partie des eaux de la rue du 1 er Bataillon, et de la rue des Platanes.


Le secteur amont (rue des Chênes, rue des Hêtres, partie haute de la rue des Platanes) présente des canalisations avec une pente très faible, du fait de la topographie du secteur. Cela entraîne une forte saturation des réseaux à cet endroit par rapport à la surface collectée. De plus, dans la rue des Platanes, les diamètres de canalisations passent de 400 mm (regard n°55 au regard n°74), à 300 mm (regard n°74 au regard n°85). Ce diamètre de 300 mm est très insuffisant aux vues des surfaces collectées qui sont assez importantes et des faibles pentes des canalisations sur une partie de cette rue. Les réseaux sont donc saturés.


2.18.2 Projet d'aménagement

2.18.2.1 Aménagement

La solution proposée consiste à :

- Redimensionner les réseaux situés dans la partie Sud de la rue des Platanes, entre les regards n°54 et n°85. Le diamètre préconisé pour l'ensemble de ces canalisations est de 400 mm.
- Réaménager une pente régulière sur l'ensemble des tronçons situés entre les regards n°54 et n°81.
- Redimensionner les réseaux situés dans le bas de la partie Sud de la rue des Platanes, entre les regards n°86 et n°90. Le diamètre préconisé pour ces canalisations est de 500 mm.

2.18.2.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux situés dans la partie Sud de la rue des Platanes. De plus, l'effet cuvette, lié à des pentes de canalisations trop faibles, sera réduit du fait que la pente des canalisations sera revue entre les regards n°54 et n°81.

2.18.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

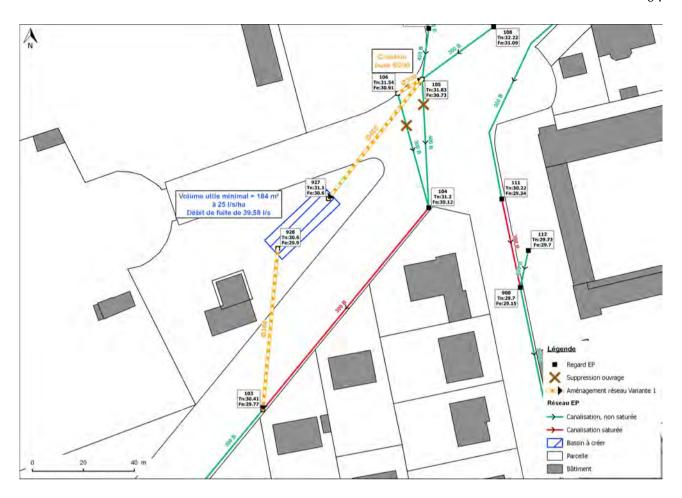
2.18.2.4 Coût

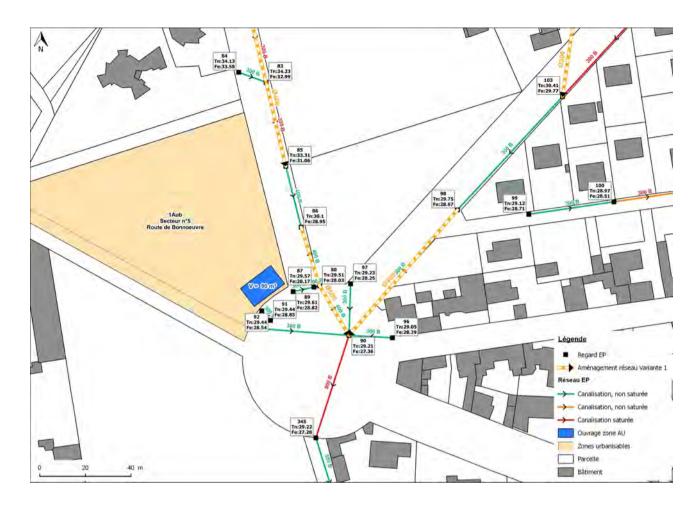
Tableau 33 : Coût de l'aménagement

Ouvrage	Longueur (m)	P U (€)	PT (€)
Canalisation en 400 sous voirie	230	140	32200
Canalisation en 500 sous voirie	52	150	7800
TOTAL			40000

2.19 Problème 18 : Rue des Acacias

2.19.1 Situation actuelle


Les réseaux situés sur ce secteur reçoivent les eaux de la rue du 8 mai 1945 et une partie des eaux de la rue du 1^{er} Bataillon. La rue des Acacias présente une topographie relativement plane. Dans le haut de la rue ces Acacias, les canalisations passent d'un diamètre de 400 mm (regard n°107 au regard n°104), à un diamètre de 300 mm (regard n°104 au regard n°90). Ce diamètre est insuffisant aux vues des surfaces collectées qui sont assez importantes. Les réseaux sont donc saturés.


2.19.2 <u>Variante n°1</u>

2.19.2.1 Aménagement

Dans cette variante, la solution proposée consiste à :

- Mettre en place un ouvrage de rétention aérien, de type noue enherbée, sur la zone en espace vert située au Nord de la partie haute de la rue des Acacias et à l'Est de l'entrée du cimetière, pour réguler les débits provenant de la rue du 8 mai 1945 et d'une partie de la rue du 1^{er} Bataillon. Cette solution permet de décharger fortement les réseaux situés en aval dans la rue des Acacias et ainsi d'éviter en partie leur redimensionnement. L'ouvrage de rétention aura un volume de 184 m³, et un débit de fuite en sortie de l'ouvrage de 39,58 l/s. Cet ouvrage est régulé à 25 l/s/ha.
- Déconnecter la branche de réseau provenant de la rue du 8 mai 1945 et envoyer les eaux de ce secteur dans le bassin de rétention qui sera créé. Pour cela, une canalisation sera donc créée entre le regard n°105 et l'entrée du futur bassin de rétention (point n°927 qui sera créé en entrée de bassin). Le diamètre préconisé pour la canalisation à créer est de 400 mm.
- Créer une canalisation entre les regards n°106 et n°105, pour envoyer les eaux collectées par cet avaloir dans la branche de réseau qui sera connectée à l'ouvrage de rétention qui sera créé. Le diamètre préconisé pour la canalisation à créer est de 300 mm.
- Créer une canalisation entre la sortie de l'ouvrage de rétention (point n°928 qui sera créé en sortie de bassin) et le regard n°103, permettant de renvoyer les eaux régulées en sortie de bassin dans le réseau EP existant.
- Redimensionner les réseaux situés dans le bas de la rue des Acacias, entre les regards n°98 et n°90. Le diamètre préconisé pour ces canalisations est de 400 mm.

2.19.2.2 Résolution des problèmes hydrauliques

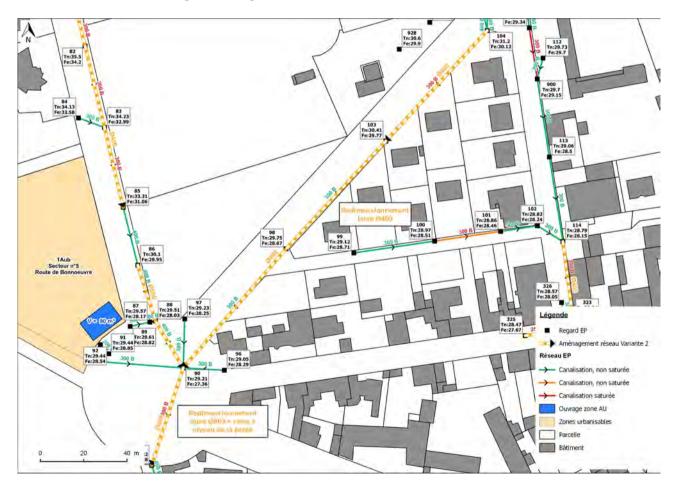
Cet aménagement permettra de tamponner les débits provenant de la rue du 8 Mai 1945. Les débits seront fortement diminués à l'aval et cet aménagement permettra d'éviter la saturation des réseaux situés en aval, dans la rue des Acacias, et de limiter fortement le nombre de tronçons à redimensionner en aval.

2.19.2.3 Efficacité en termes de dépollution des eaux

Cet aménagement permettra un abattement important des polluants, et un retour vers la nappe d'une partie des eaux stockées.

2.19.2.4 Coût

Tableau 34 : Coût de l'aménagement


Ouvrage	Longueur (m)	Volume stocké (m³)	P U (€)	PT (€)
Création d'un bassin de rétention	-	184	60	11040
Canalisation en 300 sous voirie	36,5	-	130	4745
Canalisation en 300 sous prairie	14	-	45	630
Canalisation en 400 sous voirie	103	-	140	14420
Canalisation en 400 sous prairie	10	-	50	500
TOTAL				31335

2.19.3 Variante n°2

2.19.3.1 Aménagement

Dans cette variante, la solution proposée consiste à :

- Redimensionner l'ensemble des réseaux situés dans la rue des Acacias, entre les regards n°104 et n°90. Le diamètre préconisé pour ces canalisations est de 400 mm.
- Redimensionner et à remettre à niveau la pente sur le tronçon situé au niveau du rond-point du Château, entre les regards n°90 et n°345, en réhaussant légèrement la cote du regard n°90. Le diamètre préconisé pour ces canalisations est de 800 mm.

2.19.3.2 Résolution des problèmes hydrauliques

Cet aménagement permettra d'éviter en grande partie la saturation des réseaux de cette zone.

2.19.3.3 Efficacité en termes de dépollution des eaux

Cet aménagement n'apportera pas d'amélioration notable sur la qualité des eaux.

2.19.3.4 Coût

Tableau 35 : Coût de l'aménagement

Ouvrage	Longueur (m)	Volume stocké (m³)	P U (€)	PT (€)
Canalisation en 400 sous voirie	210	-	140	29400
Canalisation en 800 sous voirie	50	-	300	15000
TOTAL				44400

2.19.4 Synthèse des variantes

Les deux variantes proposées sont comparées sur le plan technique et économique dans le tableau ci-dessous :

Tableau 36 : Comparatif des aménagements

	Variante n°1	Variante n°2	
Aménagement proposé	Création d'un bassin de rétention de 184 m³, déconnexion des réseaux pour envoyer les eaux dans le bassin, puis redimensionnement des canalisations en Ø400 mm en bas de rue	Redimensionnement des canalisations en Ø400 et Ø800 mm	
Estimation du coût global	31 335,00 €	44 400,00 €	
Efficacité hydraulique	+++	+++	
Incidence sur le milieu récepteur	+++	+	
Inconvénient	Acquisition du foncier	Pas d'abaissement supplémentaire des polluants / Prix	

Les deux variantes permettent de résoudre les problèmes de saturation des réseaux observés dans la rue des Acacias. La variante n°1 permet également d'améliorer fortement la qualité du rejet des eaux pluviales de cette zone sur le milieu naturel. De plus, cette variante permet de décharger fortement les réseaux situés en aval, et elle est moins coûteuse que la deuxième.

3 PROPOSITION D'AMÉNAGEMENTS ZONES "AU"

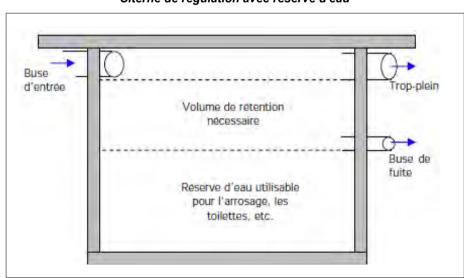
3.1 Présentation

L'objectif de cette partie est de proposer des techniques alternatives de gestion des eaux pluviales dans les nouvelles zones ouvertes à l'urbanisation.

Ces solutions peuvent être de différentes natures :

- bassin de rétention,
- bassin d'infiltration,
- ouvrages de traitement à la parcelle,
- solutions mixtes combinant gestion à la parcelle et bassin collectif.

Les techniques alternatives qui sont proposées ici sont adaptées au contexte environnemental et urbain de la commune de Saint-Mars-la-Jaille. Il s'agit de techniques extensives et peu coûteuses.


3.2 Techniques de gestion des eaux pluviales

3.2.1 La cuve enterrée

La **cuve enterrée** est un réservoir de stockage des eaux pluviales. Celles-ci sont collectées par l'intermédiaire des gouttières et sont détournées vers une cuve qui peut être installée à l'intérieur ou à l'extérieur de l'habitation. Pour la mise en place de ce système, il est nécessaire d'avoir :

- Un **collecteur**, de préférence filtrant,
- Une cuve bien dimensionnée,
- Un système de trop plein pour éviter les débordements.

Par la suite, l'eau de pluie peut être réutilisée pour les besoins domestiques (arrosage du jardin, lavage de la voiture, ...).

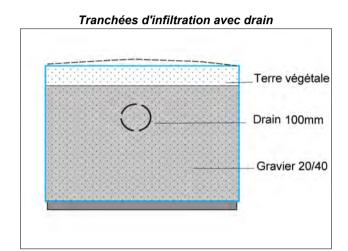
Citerne de régulation avec réserve d'eau

3.2.2 <u>Le puits d'infiltration</u>

Les **puits d'infiltration** sont des dispositifs de plusieurs mètres de profondeur qui permettent le transit du ruissellement vers un horizon perméable du sol pour assurer un débit de rejet compatible avec les surfaces drainées, après stockage et prétraitement éventuels. Le plus souvent, ces puits sont remplis d'un matériau très poreux qui assure la tenue des parois. Celui-ci est entouré d'un géotextile qui évite la migration des éléments fins (verticalement et horizontalement). Les **puits sont souvent associés à des techniques de stockage** de type chaussée-réservoir, tranchée drainante, fossé ou même bassin de retenue, dont ils assurent alors le débit de fuite.

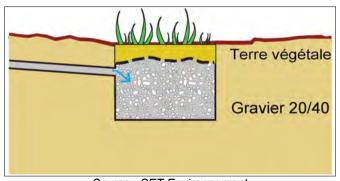
Il existe deux principaux types de fonctionnement :

- Les puits d'infiltration qui ne sont pas en contact direct avec la nappe phréatique.
- Les **puits d'injection** qui sont en contact direct avec la nappe et injectent donc directement l'eau dans la zone saturée.


Source: SET Environnement

3.2.3 Les tranchées d'infiltration

Une **tranchée** est un ouvrage superficiel (entre 1 et 2 mètres de profondeur), utilisé pour l'assainissement pluvial des **voiries et des toitures**. Le stockage de l'eau s'effectue dans les **structures granulaires reconstituées** (galets, roches concassées, graviers, matériaux alvéolaires). Les tranchées sont revêtues de dalles de béton ou de pelouse, selon l'usage superficiel : stationnement, trottoirs le long de la voirie, ou jardins. L'eau est collectée, soit localement par un système classique **d'avaloirs et de drains** qui conduisent l'eau dans le corps de la tranchée, soit par infiltration à travers un revêtement drainant en surface ou par des orifices entre bordures ou autres systèmes d'injection. L'évacuation se fait de façon classique vers un exutoire prédéfini (réseau d'assainissement pluvial, infiltration dans le sol).


Il existe deux principaux types de fonctionnement :

- Les tranchées drainantes ou de stockage : système de rétention des eaux enterré uniquement en cas de perméabilité naturelle trop faible du sol, d'infiltration impossible (zones de protection de captage, présence de nappes), ou d'eaux trop fortement chargées. L'eau pénètre dans la structure par ruissellement ou par injection et elle reste momentanément stockée pendant l'épisode pluvieux, puis elle est restituée à débit régulé vers un exutoire.
- Les tranchées infiltrantes : système d'infiltration, couplé au système de rétention. L'évacuation des eaux pluviales se fait par infiltration directe dans le sol mais on peut également la coupler avec un écoulement régulé. Ceci permettra la vidange complète de l'ouvrage.

Source: SET Environnement

Tranchées d'infiltration sans drain

3.2.4 Le bassin de rétention

Les eaux sont collectées par un ouvrage de stockage, le bassin, qui les restitue soit par **infiltration** dans le sol (bassin d'infiltration), soit à débit régulé vers un **exutoire ou un réseau** (bassin de retenue). Parmi les bassins de retenue, on distingue les **bassins en eau**, qui conservent une lame d'eau en permanence, il y a aussi les **bassins secs**, qui sont vides la majeure partie du temps et dont la durée d'utilisation est très courte, de l'ordre de quelques heures seulement, ou encore les bassins enterrés.

Ils sont principalement constitués de trois parties : un ouvrage d'alimentation, une zone de stockage et un ouvrage de régulation (garantissant le débit de fuite).

On distingue deux types de bassin sec :

- Bassin sec planté ou enherbé: le fond, à très faible pente, est constitué d'un espace planté ou engazonné. L'intégration paysagère est le principal axe de valorisation. Ils ont une capacité d'infiltration qui est proportionnelle aux surfaces végétalisées « offertes » à l'infiltration.
- Bassin sec revêtu: l'étanchéité du fond, des berges et des talus est assurée par géomembrane, béton ou enrobé. Tout risque de contamination du sol par une pollution éventuelle est alors évité. Cependant, il est beaucoup moins esthétique mais peut trouver une valorisation pluri-fonctionnelle (terrain de sport, parc de stationnement, etc.).

Les **bassins** en eau sont des plans d'eaux permanents dans lesquels sont déversés les eaux de pluie et de ruissellement collectées au cours de l'épisode pluvieux. Leur taille varie en fonction de leur utilité (usage plurifonctionnel) et du volume de rétention nécessaire. Elle peut varier de la petite mare en fond de jardin jusqu'au lac accueillant des activités nautiques.

Les **bassins enterrés** sont des ouvrages de stockage souterrains, que l'on peut enterrer sous des espaces verts, des voiries ou encore de parcs de stationnement. Ils se vidangent complètement suite à l'épisode pluvieux. Il est préférable, pour les gros volumes, de mettre en œuvre des structures réservoirs. Pour les plus petits volumes, ce bassin est plus généralement utilisé chez le particulier et s'apparente à une citerne ou une cuve.

Source : Bassin d'eaux pluviales à Crevecoeur le Grand (60)

3.3 Aménagements des zones AU de petite taille et des dents creuses

3.3.1 Principe

Les zones urbanisables dont la surface est inférieure à 1 hectare ne sont pas soumises à la Loi sur l'Eau. La rétention des eaux pluviales n'est donc pas obligatoire. Néanmoins, elles génèrent des débits d'eau ruisselés importants, qui, lorsqu'ils se cumulent, peuvent déclencher des problèmes hydrauliques importants. Il est donc important de mettre en place des mesures de gestion des eaux pluviales dans ces zones.

Il s'agit généralement de projets d'urbanisation isolés, dans lesquels il est difficile d'établir une réserve foncière pour implanter un ouvrage collectif de traitement des eaux pluviales. La solution la plus simple à mettre en œuvre est donc un traitement à la parcelle. Son principe est de stocker les eaux pluviales puis de les relarguer à débit régulé ou si possible de les infiltrer. Plusieurs solutions peuvent être mises en œuvre :

- la cuve enterrée,
- le puits d'infiltration,
- les tranchées d'infiltration.
- la noue de rétention/infiltration.

Ces solutions peuvent notamment être préconisées pour des densifications de dents creuses ou des divisions de parcelles déjà construites.

Sur la commune de Saint-Mars-la-Jaille, la capacité d'infiltration des sols est globalement moyenne à médiocre. Aussi, les ouvrages de gestion à la parcelle seront préférentiellement aménagés avec une buse de fuite, permettant l'évacuation du trop-plein d'eau pluviale dans le réseau collectif. Ce débit régulé est calculé de façon à ce qu'il n'y ait pas d'augmentation des débits ruisselés après l'urbanisation des zones.

Les ouvrages sont dimensionnés pour pouvoir réguler la pluie la plus intense d'une période de retour de 10 ans. Au-delà, le surplus de débit sera évacué par surverse dans le réseau collectif.

3.3.2 Dimensionnement et coût

3.3.2.1 Présentation

Les quatre solutions précédemment citées ont été dimensionnées et chiffrées, sur la base d'un projet d'habitation totalisant 100 à 250 m² imperméabilisés (toiture, terrasse et voirie privée) en considérant une unité foncière de 500 m². Pour chaque mètre carré imperméabilisé en plus, l'extension de la filière de traitement et son coût ont été évalué.

3.3.2.2 <u>Cuve enterrée</u>

Tableau 37 : Dimensionnement et coût d'une cuve enterrée

Surface imperméabilisée du projet	Volume de la cuve (m³)	Coût
100 m ²	3	600,00 €
120 m²	3,5	700,00 €
150 m ²	4,3	860,00 €
200 m ²	5,8	1 160,00 €
250 m ²	7,3	1 460,00 €
m² supplémentaire	30 L/m ²	6,00 €

3.3.2.3 <u>Le puits d'infiltration</u>

Tableau 38 : Dimensionnement et coût d'un puits d'infiltration

Surface imperméabilisée du projet	Volume du puits (m³)	Coût
100 m ²	4	600,00 €
120 m²	4,6	690,00 €
150 m ²	5,4	810,00 €
200 m ²	6,8	1 020,00 €
250 m ²	8,3	1 245,00 €
m² supplémentaire	40 L/m²	6,00 €

3.3.2.4 <u>Les tranchées d'infiltration</u>

Tableau 39 : Dimensionnement et coût des tranchées d'infiltration

Surface du projet	Longueur des tranchées (m)	Volume utile des tranchées (m³)	Coût
100 m ²	31	3,7	465,00 €
120 m²	34	4,1	510,00 €
150 m ²	40	4,8	600,00 €
200 m ²	50	6,0	750,00 €
250 m ²	59	7,1	885,00 €
m² supplémentaire	0,31	0,037	4,65 €

3.3.2.5 La noue de rétention/infiltration

Tableau 40 : Dimensionnement et coût d'une noue

Surface du projet	Volume de la noue (m³)	Coût
100 m ²	3,8	190,00 €
120 m²	4,3	215,00 €
150 m ²	5,1	255,00 €
200 m ²	6,4	320,00 €
250 m ²	7,7	385,00 €
m² supplémentaire	38 L/m²	1,90 €

Annexe 1 : Calculs hydrauliques à la parcelle

3.3.3 <u>Imperméabilisation supplémentaire des zones urbanisées</u>

L'augmentation du taux d'imperméabilisation engendre nécessairement un accroissement du ruissellement. L'expérience montre que l'accroissement progressif de ce taux, même dans des bourgs de petite taille, peut engendrer des problèmes d'inondations inexistants auparavant.

En parallèle, les politiques de lutte contre la consommation d'espaces naturels et agricoles nécessitent de densifier de plus en plus l'habitat.

Pour répondre à ces deux problématiques, le zonage d'assainissement des eaux pluviales prévoira de limiter l'imperméabilisation en fixant des seuils maximums variables en fonction de l'unité foncière. Cette solution a pour objectif de responsabiliser chaque propriétaire sur son rôle dans le ruissellement pluvial sans pénaliser la densification de l'habitat.

Dans le cas du dépassement du taux d'imperméabilisation maximal autorisé, l'imperméabilisation de surfaces supplémentaires ne sera possible, après accord de la mairie, qu'à condition d'avoir un volume de stockage à la parcelle de **40** L/m² **imperméabilisé.** Cette régulation sera demandée lors de toute déclaration de travaux ou permis de construire à l'origine du dépassement du taux maximal d'imperméabilisation autorisé. Ce volume de stockage est calculé sur la base de la surface nouvellement imperméabilisée. Ce volume de stockage sera au minimum de 2 m³.

Le débit de fuite à respecter dans ce cas précis est de 3 l/s/ha suivant la réglementation, soit 1,1 L/h/m².

La rétention pourra se faire sur des surfaces nouvellement imperméabilisées dans le cadre du projet ou sur des surfaces déjà existantes, au choix du pétitionnaire. Par exemple, la réalisation d'une terrasse de 50 m² peut tout à fait être compensée par la réalisation d'une citerne de rétention des eaux pluviales collectant des eaux de toiture de l'habitation attenante.

L'ouvrage de stockage pourra prendre différentes formes, au choix du pétitionnaire : tranchées d'infiltration, puisard, noue, cuve enterrée ou hors sol...

SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II

Le dimensionnement et le coût estimatif de ces ouvrages sont présentés dans le paragraphe précédent.

3.4 Aménagements des zones à urbaniser

3.4.1 Principe

Cette partie concerne les zones ouvertes à l'urbanisation.

Les zones ouvertes à l'urbanisation sont le secteur n°1 – 1 Aub « La Léverie », le secteur n°2 1AUb « Rue des Platanes 1 », le secteur n°3 – 1AUb « Rue des Platanes 2 », le secteur n°4 – 1AUb « Torterelle », le secteur n°5 – 1AUb « Route de Bonnoeuvre / rue des Platanes », le secteur n°6 – 1AUb « Rue des Glycines / Boulevard de la Gare », le secteur n°7 – 1AUe « Le Prateau », et le secteur n°8 – 1AUe « Les Basses Riantières ».

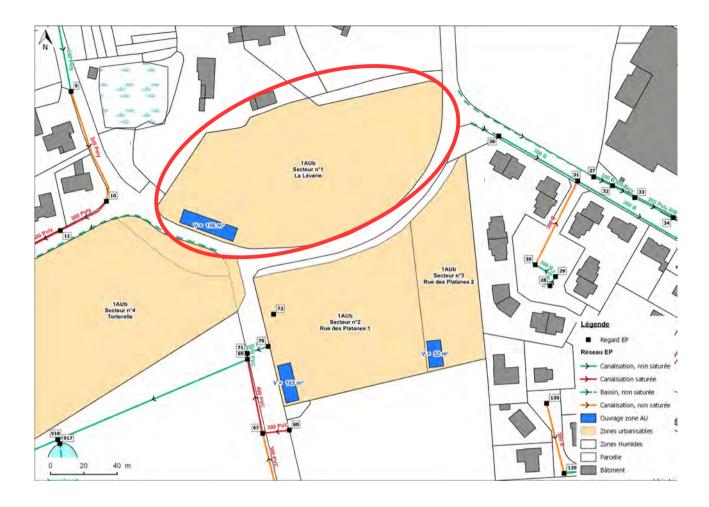
Sur ces secteurs, une ou deux solutions peuvent être proposées :

- la réalisation d'un bassin de rétention pour chaque zone,
- et/ou la réalisation d'un bassin de rétention commun à plusieurs zones,
- et/ou l'infiltration à la parcelle des eaux des lots privatifs et la réalisation d'un bassin de rétention pour les eaux des parties communes,
- et/ou l'infiltration à la parcelle des eaux de l'ensemble de la zone.

Pour les zones 1AUb, le dimensionnement est basé sur un coefficient d'imperméabilisation de 50 % au maximum. Pour la zone 1AUe situé au lieu-dit « Le Prateau », le dimensionnement est basé sur un coefficient d'imperméabilisation de 90 % au maximum. Pour la zone 1AUe située au lieu-dit « Les Basses Riantières », le dimensionnement est basé sur un coefficient d'imperméabilisation de 80 % au maximum.

Annexe 2 : Calculs hydrauliques des ouvrages collectifs

3.4.2 Secteur n°1 - 1 AUb « La Léverie »


3.4.2.1 Aménagement

Le secteur de la Léverie est une zone constituée de parcelles agricoles, et d'habitations, et située au Nord-Ouest du centre-bourg. Cette zone, d'une superficie de 1,14 hectares, est classée en zone 1AUb. Le taux d'imperméabilisation maximal pour cette zone est fixé à 50 %.

Les deux solutions envisagées pour cette zone sont :

- soit, la création d'un bassin de rétention, aérien ou enterré, pour collecter les eaux de l'ensemble de la zone.
- soit, une gestion à la parcelle des eaux des lots privatifs et la réalisation d'un bassin de rétention pour les eaux des parties communes.

Le premier scénario conduit à l'aménagement d'un bassin de rétention d'environ 156 m³, tandis que le deuxième conduit à l'aménagement d'un ouvrage de gestion à la parcelle pour chacun des lots prévus, et d'un bassin de rétention pour collecter les eaux des parties communes.

3.4.2.2 <u>Coût</u>

Le coût de l'aménagement proposé est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

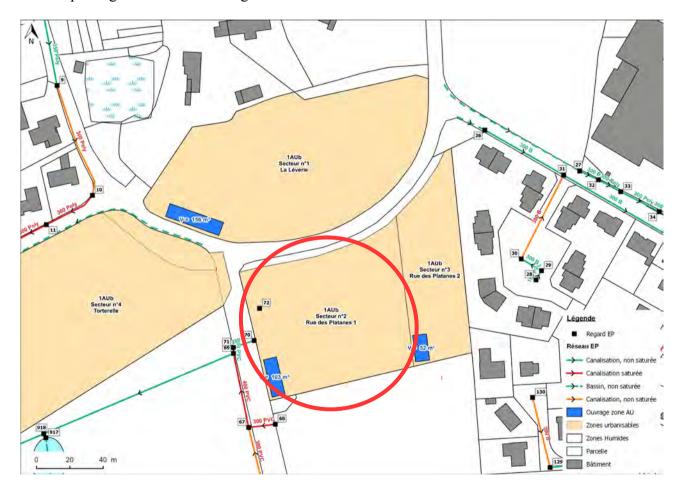
Tableau 41 : Coûts

	Scénario
Aménagement proposé	Création d'un bassin de 156 m ³
Coût à la charge du lotisseur	9 360 €
Coût à la charge des particuliers	0 €
Coût global	9 360 €

Pour le scénario n°2, le prix d'un ouvrage de gestion à la parcelle pour chaque lot variera de 300 € à 1500 €, en fonction de la filière de traitement choisie et des surfaces collectées, conformément aux dimensionnements donnés dans la partie 3.3.

Il est à noter que la gestion globale des eaux pluviales dans un seul ouvrage est généralement moins coûteuse qu'une gestion à la parcelle.

SET Environnement	Commune de SAINT-MARS-LA-JAILLE – SDEP – Phase II


3.4.3 Secteur n°2 – 1AUb « Rue des Platanes 1 »

3.4.3.1 Aménagement

Le secteur de la partie Nord de la rue des Platanes est une zone constituée de parcelles agricoles, et d'habitations, et située au Nord-Ouest du centre-bourg. Cette zone, d'une superficie de 0,75 hectare, est classée en zone 1AUb. Le taux d'imperméabilisation maximal pour cette zone est fixé à 50 %.

La solution envisagée pour cette zone est un bassin de rétention, aérien ou enterré.

Le scénario conduit à l'aménagement d'un bassin de rétention d'environ 103 m³, qui collectera les eaux de l'ensemble de la zone. Comme précédemment, une gestion à la parcelle pour l'ensemble de la zone peut également être envisagée.

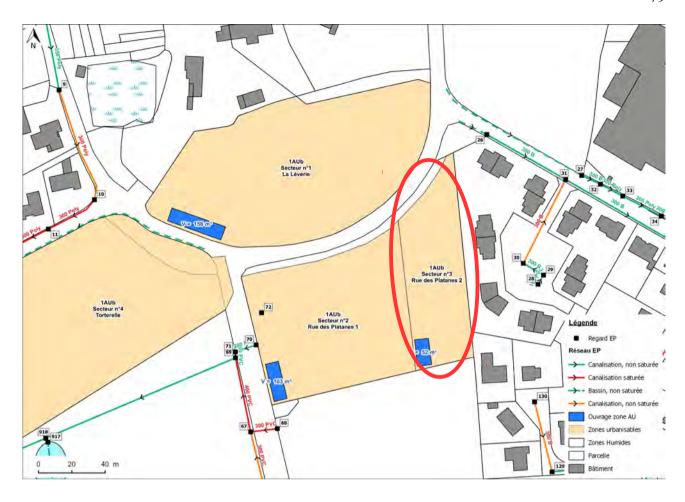
3.4.3.2 Coût

Le coût de l'aménagement proposé est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

Tableau 42 : Coûts

	Scénario
Aménagement proposé	Création d'un bassin de 103 m ³
Coût à la charge du lotisseur	6 180 €
Coût à la charge des particuliers	0 €
Coût global	6 180 €

3.4.4 Secteur n°3 – 1AUb « Rue des Platanes 2 »


3.4.4.1 <u>Aménagement</u>

Le secteur de la partie Nord de la rue des Platanes est une zone constituée de parcelles agricoles, et d'habitations, et située au Nord-Ouest du centre-bourg. Cette zone, d'une superficie de 0,39 hectare, est classée en zone 1AUb. Le taux d'imperméabilisation maximal pour cette zone est fixé à 50 %.

Les deux solutions envisagées pour cette zone sont :

- soit, la création d'un bassin de rétention, aérien ou enterré, pour collecter les eaux de l'ensemble de la zone.
- soit, une gestion à la parcelle de l'ensemble de la zone.

Le premier scénario conduit à l'aménagement d'un bassin de rétention d'environ 52 m³, qui collectera les eaux de l'ensemble de la zone. Le deuxième scénario conduit à l'aménagement d'ouvrages de gestion à la parcelle pour l'ensemble de la zone.

3.4.4.2 <u>Coût</u>

Le coût de l'aménagement proposé est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

Tableau 43 : Coûts

	Scénario
Aménagement proposé	Création d'un bassin de 52 m ³
Coût à la charge du lotisseur	3 120 €
Coût à la charge des particuliers	0 €
Coût global	3 120 €

Pour le scénario n°2, le prix d'un ouvrage de gestion à la parcelle pour chaque lot variera de 300 € à 1500 €, en fonction de la filière de traitement choisie et des surfaces collectées, conformément aux dimensionnements donnés dans la partie 3.3.

3.4.5 Secteur n°4 – 1AUb « Torterelle »

3.4.5.1 Aménagement

Le secteur de Torterelle est une zone constituée de parcelles agricoles, et d'habitations, et située au Nord-Ouest du centre-bourg. Cette zone, d'une superficie de 4,51 hectares, est classée en zone 1AUb. Le taux d'imperméabilisation maximal pour cette zone est fixé à 50 %.

La solution envisagée pour cette zone est un bassin de rétention, aérien ou enterré.

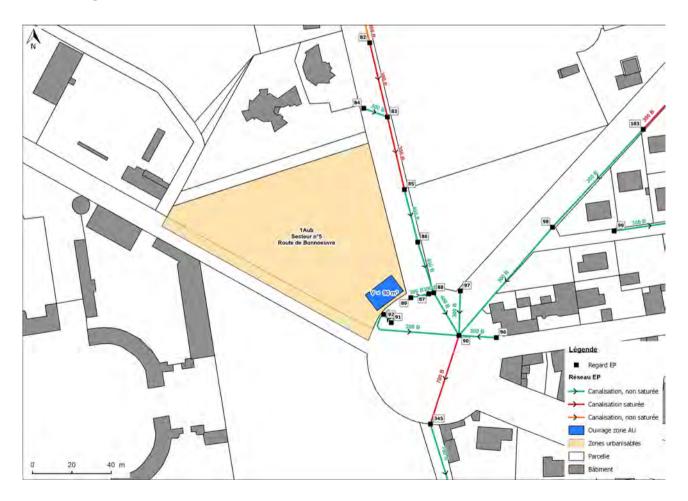
Le scénario conduit à l'aménagement d'un bassin de rétention d'environ 628 m³, qui collectera les eaux de l'ensemble de la zone.

3.4.5.2 Coût

Le coût de l'aménagement proposé est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

Tableau 44 : Coûts

	Scénario
Aménagement proposé	Création d'un bassin de 628 m ³
Coût à la charge du lotisseur	37 680 €
Coût à la charge des particuliers	0 €
Coût global	37 680 €


3.4.6 <u>Secteur n°5 – 1AUb « Route de Bonnoeuvre / Rue des Platanes »</u>

3.4.6.1 Aménagement

Le secteur n°5 est une zone constituée de parcelles agricoles, et située à l'Ouest du centre-bourg, à proximité d'habitations, du cimetière et du château. Cette zone, d'une superficie de 0,66 hectare, est classée en zone 1AUb. Le taux d'imperméabilisation maximal pour cette zone est fixé à 50 %.

La solution envisagée pour cette zone est un bassin de rétention, aérien ou enterré.

Le scénario conduit à l'aménagement d'un bassin de rétention d'environ 90 m³, qui collectera les eaux de l'ensemble de la zone. Une gestion à la parcelle pour l'ensemble de la zone peut également être envisagée.

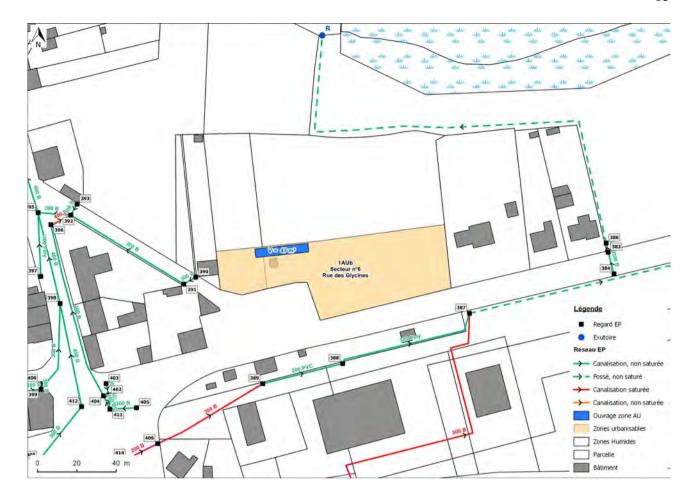
3.4.6.2 Coût

Le coût des aménagements proposés est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

Tableau 45 : Coûts

	Scénario
Aménagement proposé	Création d'un bassin de 90 m ³
Coût à la charge du lotisseur	5 400 €
Coût à la charge des particuliers	0 €
Coût global	5 400 €

3.4.7 <u>Secteur n°6 – 1AUb « Rue des Glycines / Boulevard de la Gare »</u>


3.4.7.1 Aménagement

Le secteur n°6 est une zone constituée de parcelles agricoles, et d'habitations, située au Sud du centre-bourg. Cette zone, d'une superficie de 0,35 hectare, est classée en zone 1AUb. Le taux d'imperméabilisation maximal pour cette zone est fixé à 50 %.

Les deux solutions envisagées pour cette zone sont :

- soit, la création d'un bassin de rétention, aérien ou enterré, pour collecter les eaux de l'ensemble de la zone.
- soit, une gestion à la parcelle de l'ensemble de la zone.

Le premier scénario conduit à l'aménagement d'un bassin de rétention d'environ 47 m³, qui collectera les eaux de l'ensemble de la zone. Le deuxième scénario conduit à l'aménagement d'ouvrages de gestion à la parcelle pour l'ensemble de la zone.

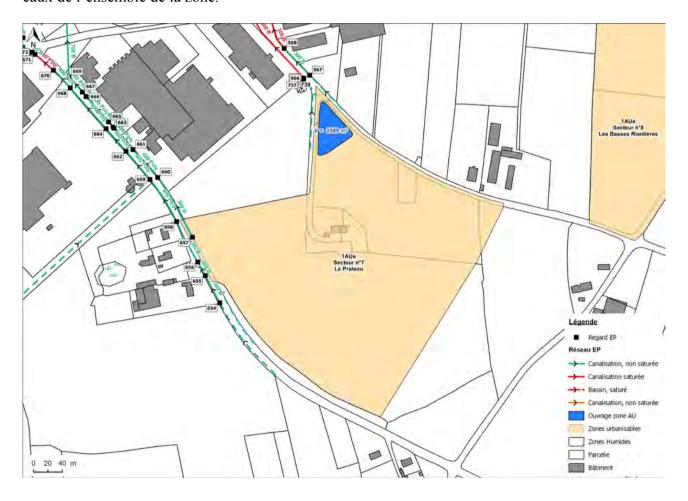
3.4.7.2 <u>Coût</u>

Le coût des aménagements proposés est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

Tableau 46 : Coûts

	Scénario n°1
Aménagement proposé	Création d'un bassin de 47 m ³
Coût à la charge du lotisseur	2 820 €
Coût à la charge des particuliers	0 €
Coût global	2 820 €

Pour le scénario n°2, le prix d'un ouvrage de gestion à la parcelle pour chaque lot variera de 300 € à 1500 €, en fonction de la filière de traitement choisie et des surfaces collectées, conformément aux dimensionnements donnés dans la partie 3.3.


3.4.8 Secteur n°7 – 1AUe « Le Prateau »

3.4.8.1 Aménagement

Le secteur du Prateau est une zone constituée de parcelles agricoles, située en limite Sud de la ZI « Le Croissel », et au Sud-Est du centre-bourg. Cette zone, d'une superficie de 9,69 hectares, est classée en zone 1AUe. Le taux d'imperméabilisation maximal pour cette zone est fixé à 90 %.

La solution envisagée pour cette zone est un bassin de rétention, aérien ou enterré.

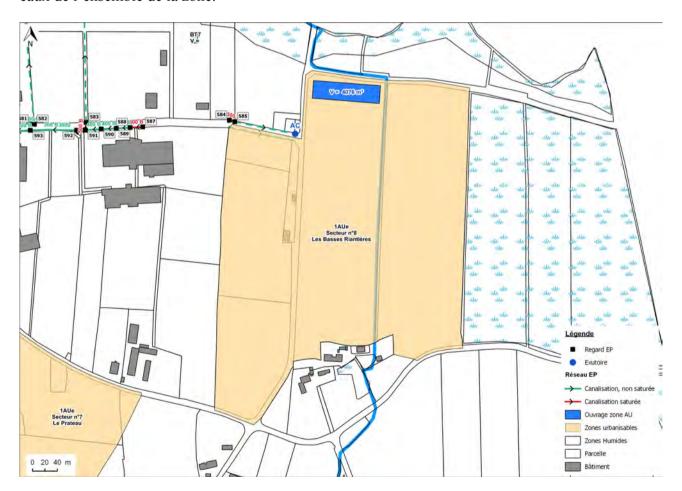
Le scénario conduit à l'aménagement d'un bassin de rétention d'environ 2 589 m³, qui collectera les eaux de l'ensemble de la zone.

3.4.8.2 Coût

Le coût des aménagements proposés est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

Tableau 47 : Coûts

	Scénario
Aménagement proposé	Création d'un bassin de 2 589 m ³
Coût à la charge du lotisseur	155 340 €
Coût à la charge des particuliers	0 €
Coût global	155 340 €


3.4.9 Secteur n°8 – 1AUe « Les Basses Riantières »

3.4.9.1 Aménagement

Le secteur des Basses Riantières est une zone constituée de parcelles agricoles, située en limite Est de la ZI « Le Croissel », et au Sud-Est du centre-bourg. Cette zone, d'une superficie de 17,34 hectares, est classée en zone 1AUe. Le taux d'imperméabilisation maximal pour cette zone est fixé à 80 %.

La solution envisagée pour cette zone est un bassin de rétention, aérien ou enterré.

Le scénario conduit à l'aménagement d'un bassin de rétention d'environ 4 076 m³, qui collectera les eaux de l'ensemble de la zone.

3.4.9.2 <u>Coût</u>

Le coût des aménagements proposés est détaillé dans le tableau suivant. Les valeurs de prix unitaires sont des coûts moyens, le coût total de l'aménagement est donc une estimation générale.

Tableau 48 : Coûts

	Scénario
Aménagement proposé	Création d'un bassin de 4 076 m ³
Coût à la charge du lotisseur	244 560 €
Coût à la charge des particuliers	0 €
Coût global	244 560 €

CONCLUSION

Les propositions d'aménagements ont plusieurs objectifs :

- Résoudre les problèmes hydrauliques existants,
- Gérer de manière globale les aménagements des zones urbanisables,
- Apporter une aide dans le choix des mesures à mettre en place.

Les mesures compensatoires permettent de limiter les débits pour le réseau des eaux pluviales situé en aval des ouvrages, de résoudre les problèmes de débordements et de mise en charge trop importante des canalisations. Elles permettent également d'améliorer la qualité du rejet qui rejoint le milieu naturel

Par la suite, la phase III du Schéma Directeur d'Assainissement des Eaux Pluviales va permettre de réaliser une étude détaillée de la situation future. Cette étude permettra d'analyser et de modéliser précisément le réseau d'assainissement en situation future, c'est-à-dire en intégrant les ouvrages, choisis par la commune, à mettre en place pour résoudre les problèmes existants et pour gérer les eaux des zones urbanisables.

Elle aura également pour objectif de chiffrer et de hiérarchiser l'ensemble de ces aménagements dans un programme pluriannuel de travaux.

ANNEXES

ANNEXE 1 : Calculs hydrauliques à la parcelle

ANNEXE 2 : Calculs hydrauliques des ouvrages collectifs

ANNEXE 3 : Plan des zones urbannisables

ANNEXE 4 : Résultats de la simulation de phase I

ANNEXE 1 : Calculs hydrauliques à la parcelle

Calcul du volume à stocker (Méthode des pluies) Cuve enterrée

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	300	0,1	0,11	0,12	0,15	0,85
Pavés	0	0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers	0	0,25	0,27	0,30	0,37	0,85
Voiries / parking	0	0,95	0,95	0,95	0,95	0,95
terrain de sport	0	0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	200	0,95	0,95	0,95	0,95	0,95
Total	500	0,44	0.44	0,45	0.47	0,89

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	0,05	0,05	0,05	0,05	0,05
Coefficient d'apport	0,44	0,44	0,45	0,47	0,89
Surface active (ha)	0,02	0,02	0,02	0,02	0,04
Débit permis (l/s)	0,15	0,15	0,15	0,15	0,15
Diamètre théorique buse de fuite (m)	0,009	0,009	0,009	0,009	0,009
Diamètre retenu (m)	0,009	0,050	0,050	0,050	0,050
Hauteur d'eau (m)	0,75	0,75	0,75	0,75	0,75
Débit maxi de la buse (l/s)	0,15	4,55	4,55	4,55	4,55
Débit maxi de la buse (m³/h)	0,5	16,4	16,4	16,4	16,4
Vitesse ascensionnelle (m/h)	0,07	0,07	0,07	0,07	0,07

Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	7,8					
K (m/h)	0,000					
débit infiltré (m3/h)		0,0	0,0	0,0	0,0	0,0

Temps de concentrationTc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie			
	10 ans	20 ans	30 ans	50 ans	100 ans
Surface de la parcelle (ha)	0,0500	0,0500	0,0500	0,0500	0,0500
Coefficient de ruissellement	0,4400	0,4438	0,4517	0,4696	0,8900
Pente moyenne de la parcelle	0,018	0,018	0,018	0,018	0,018
Temps de concentration (Tc)	3,1	3,1	3,1	3,1	2,4

Intensité maximale (i) de la pluie de durée t (en mm/h) i = a x t^(-b)

t		Fréque	nce de retour d	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
3,1	112,7	130,5	140,6	153,5	169,9
10,00 min	65,3	75,7	81,6	89,0	99,0
20,00 min	58,7	54,7	58,9	64,3	71,6
30,00 min	39,0	45,2	48,7	53,2	59,3
40,00 min	34,1	39,5	42,6	46,5	51,9
50,00 min	30,7	35,6	38,4	41,9	46,7
60,00 min	25,6	29,7	32,0	34,8	38,7
70,00 min	22,8	26,4	28,4	30,9	34,3
80,00 min	20,6	23,8	25,6	27,8	30,9
90,00 min	18,9	21,7	23,4	25,4	28,2
100,00 min	17,4	20,1	21,6	23,4	25,9
120,00 min	15,2	17,4	18,7	20,3	22,5
140,00 min	13,5	15,5	16,7	18,0	19,9
160,00 min	12,2	14,0	15,0	16,3	18,0
180,00 min	11,2	12,8	13,7	14,8	16,4
200,00 min	10,3	11,8	12,7	13,7	15,1
220,00 min	9,6	11,0	11,8	12,7	14,0
240,00 min	9,0	10,3	11,0	11,9	13,1
300,00 min	7,6	8,7	9,3	10,0	11,0
360,00 min	6,6	7,5	8,0	8,7	9,5
420,00 min	5,9	6,7	7,1	7,7	8,4
480,00 min	5,3	6,0	6,4	6,9	7,6
600,00 min	4,5	5,1	5,4	5,8	6,4
900,00 min	3,3	3,7	4,0	4,3	4,7
1200,00 min	2,7	3,0	3,2	3,4	3,7
1440,00 min	2,3	2,6	2,8	3,0	3,2
a (6-60')	3,214	3,715	4,004	4,370	4,823
b (6-60')	0,470	0,469	0,469	0,469	0,466
A (30-1440')	9,357	11,329	12,468	13,912	15,842
B (30-1440')	0,754	0,765	0,770	0,776	0,782

t	Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
3,1	24,8	28,9	31,8	36,0	75,6
10,00 min	14,4	16,8	18,4	20,9	44,0
20,00 min	12,9	12,1	13,3	15,1	31,9
30,00 min	8,6	10,0	11,0	12,5	26,4
40,00 min	7,5	8,8	9,6	10,9	23,1
50,00 min	6,7	7,9	8,7	9,8	20,8
60,00 min	5,6	6,6	7,2	8,2	17,2
70,00 min	5,0	5,8	6,4	7,3	15,3
80,00 min	4,5	5,3	5,8	6,5	13,7
90,00 min	4,2	4,8	5,3	6,0	12,5
100,00 min	3,8	4,5	4,9	5,5	11,5
120,00 min	3,3	3,9	4,2	4,8	10,0
140,00 min	3,0	3,4	3,8	4,2	8,9
160,00 min	2,7	3,1	3,4	3,8	8,0
180,00 min	2,5	2,8	3,1	3,5	7,3
200,00 min	2,3	2,6	2,9	3,2	6,7
220,00 min	2,1	2,4	2,7	3,0	6,2
240,00 min	2,0	2,3	2,5	2,8	5,8
300,00 min	1,7	1,9	2,1	2,3	4,9
360,00 min	1,5	1,7	1,8	2,0	4,2
420,00 min	1,3	1,5	1,6	1,8	3,8
480,00 min	1,2	1,3	1,5	1,6	3,4
600,00 min	1,0	1,1	1,2	1,4	2,8
900,00 min	0,7	0,8	0,9	1,0	2,1
1200,00 min	0,6	0,7	0,7	0,8	1,7
1440,00 min	0,5	0,6	0,6	0,7	1,4

t		Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans	
3,1	1,3	1,5	1,6	1,9	3,9	
10,00 min	2,3	2,7	3,0	3,4	7,2	
20,00 min	4,1	3,9	4,3	4,9	10,4	
30,00 min	4,0	4,7	5,2	6,0	12,9	
40,00 min	4,6	5,5	6,1	6,9	15,0	
50,00 min	5,2	6,1	6,8	7,7	16,9	
60,00 min	5,1	6,0	6,7	7,6	16,7	
70,00 min	5,2	6,2	6,9	7,8	17,2	
80,00 min	5,3	6,3	7,0	8,0	17,6	
90,00 min	5,4	6,4	7,1	8,1	18,0	
100,00 min	5,5	6,5	7,2	8,3	18,3	
120,00 min	5,6	6,7	7,4	8,5	18,9	
140,00 min	5,7	6,8	7,5	8,6	19,4	
160,00 min	5,7	6,8	7,6	8,7	19,9	
180,00 min	5,8	6,9	7,7	8,8	20,2	
200,00 min	5,8	6,9	7,7	8,9	20,6	
220,00 min	5,8	6,9	7,8	9,0	20,9	
240,00 min	5,8	7,0	7,8	9,0	21,1	
300,00 min	5,7	6,9	7,8	9,0	21,7	
360,00 min	5,5	6,8	7,7	9,0	22,2	
420,00 min	5,3	6,6	7,5	8,9	22,5	
480,00 min	5,1	6,4	7,3	8,7	22,8	
600,00 min	4,5	5,9	6,9	8,3	23,0	
900,00 min	2,9	4,3	5,4	6,9	23,0	
1200,00 min	1,0	2,5	3,6	5,2	22,3	
1440,00 min	0,0	0,9	2,0	3,7	21,5	
Débit de fuite (m³/h)	0,54	0,54	0,54	0,54	0,54	
Volume maxi à stocker (m³)	5,8	7	8	9	23	
Temps moyen de résidence (h)	1,2	1,5	1,6	1,9	4,8	
Temps de vidange (h)	2,4	2,9	3,3	3,8	9,7	

Volume bassin (m3)	5,9
Longueur extérieure (m)	3,0
Largeur extérieure (m)	2,6
Profondeur max (m)	0,75
Pente talus (°)	90,0

Longueur fond du bassin	3,0
Largeur fond du bassin	2.6

Calcul du volume à stocker (Méthode des pluies) Noue d'infiltration

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie					
		10 ans	20 ans	30 ans	50 ans	100 ans	
Espaces verts	300	0,1	0,11	0,12	0,15	0,85	
Pavés	0	0,8	0,85	0,95	0,95	0,95	
Stabilisé/graviers	0	0,25	0,27	0,30	0,37	0,85	
Voiries / parking	0	0,95	0,95	0,95	0,95	0,95	
terrain de sport	0	0,2	0,21	0,24	0,30	0,85	
Toitures bâtiments	200	0,95	0,95	0,95	0,95	0,95	
Total	500	0,44	0,44	0,45	0,47	0,89	

Calcul de la section de fuite

	Fréquence de retour de la pluie					
	10 ans	20 ans	30 ans	50 ans	100 ans	
Débit permis (l/ha/s)	3	3	3	3	3	
Surface projet (ha)	0,05	0,05	0,05	0,05	0,05	
Coefficient d'apport	0,44	0,44	0,45	0,47	0,89	
Surface active (ha)	0,02	0,02	0,02	0,02	0,04	
Débit permis (l/s)	0,15	0,15	0,15	0,15	0,15	
Diamètre théorique buse de fuite (m)	0,010	0,010	0,010	0,010	0,010	
Diamètre retenu (m)	0,000	0,050	0,050	0,050	0,050	
Hauteur d'eau (m)	0,5	0,5	0,5	0,5	0,5	
Débit maxi de la buse (l/s)	0,00	3,71	3,71	3,71	3,71	
Débit maxi de la buse (m³/h)	0,0	13,4	13,4	13,4	13,4	
Vitesse ascensionnelle (m/h)	0,00	0,00	0,00	0,00	0,00	

Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	19,6					
K (m/h)	0,010					
débit infiltré (m3/h)		0,2	0,2	0,2	0,2	0,2

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie					
	10 ans	20 ans	30 ans	50 ans	100 ans		
Surface de la parcelle (ha)	0,0500	0,0500	0,0500	0,0500	0,0500		
Coefficient de ruissellement	0,4400	0,4438	0,4517	0,4696	0,8900		
Pente moyenne de la parcelle	0,018	0,018	0,018	0,018	0,018		
Temps de concentration (Tc)	3.1	3.1	3.1	3.1	2.4		

Intensité maximale (i) de la pluie de durée t (en mm/h)

 $i = a \times t^{(-b)}$

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
3,1	112,7	130,5	140,6	153,5	169,9
10,00 min	65,3	75,7	81,6	89,0	99,0
20,00 min	58,7	54,7	58,9	64,3	71,6
30,00 min	39,0	45,2	48,7	53,2	59,3
40,00 min	34,1	39,5	42,6	46,5	51,9
50,00 min	30,7	35,6	38,4	41,9	46,7
60,00 min	25,6	29,7	32,0	34,8	38,7
70,00 min	22,8	26,4	28,4	30,9	34,3
80,00 min	20,6	23,8	25,6	27,8	30,9
90,00 min	18,9	21,7	23,4	25,4	28,2
100,00 min	17,4	20,1	21,6	23,4	25,9
120,00 min	15,2	17,4	18,7	20,3	22,5
140,00 min	13,5	15,5	16,7	18,0	19,9
160,00 min	12,2	14,0	15,0	16,3	18,0
180,00 min	11,2	12,8	13,7	14,8	16,4
200,00 min	10,3	11,8	12,7	13,7	15,1
220,00 min	9,6	11,0	11,8	12,7	14,0
240,00 min	9,0	10,3	11,0	11,9	13,1
300,00 min	7,6	8,7	9,3	10,0	11,0
360,00 min	6,6	7,5	8,0	8,7	9,5
420,00 min	5,9	6,7	7,1	7,7	8,4
480,00 min	5,3	6,0	6,4	6,9	7,6
600,00 min	4,5	5,1	5,4	5,8	6,4
900,00 min	3,3	3,7	4,0	4,3	4,7
1200,00 min	2,7	3,0	3,2	3,4	3,7
1440,00 min	2,3	2,6	2,8	3,0	3,2
a (6-60')	3,214	3,715	4,004	4,370	4,823
b (6-60')	0,470	0,469	0,469	0,469	0,466
A (30-1440')	9,357	11,329	12,468	13,912	15,842
B (30-1440')	0,754	0,765	0,770	0,776	0,782

t		Fréquence de retour de la pluie							
durée de la pluie		10 ans	20 ans	30 ans	50 ans	100 ans			
3,1		24,8	28,9	31,8	36,0	75,6			
10,00 min		14,4	16,8	18,4	20,9	44,0			
20,00 min	-	12,9	12,1	13,3	15,1	31,9			
30,00 min	_	8,6	10,0	11,0	12,5	26,4			
40,00 min	_	7,5	8,8	9,6	10,9	23,1			
50,00 min		6,7	7,9	8,7	9,8	20,8			
60,00 min	-	5,6	6,6	7,2	8,2	17,2			
70,00 min	-	5,0	5,8	6,4	7,3	15,3			
80,00 min	-	4,5	5,3	5,8	6,5	13,7			
90,00 min	-	4,2	4,8	5,3	6,0	12,5			
100,00 min	-	3,8	4,5	4,9	5,5	11,5			
120,00 min	-	3,3	3,9	4,2	4,8	10,0			
140,00 min	_	3,0	3,4	3,8	4,2	8,9			
160,00 min	-	2,7	3,1	3,4	3,8	8,0			
180,00 min	-	2,5	2,8	3,1	3,5	7,3			
200,00 min	-	2,3	2,6	2,9	3,2	6,7			
220,00 min	-	2,1	2,4	2,7	3,0	6,2			
240,00 min	_	2,0	2,3	2,5	2,8	5,8			
300,00 min	-	1,7	1,9	2,1	2,3	4,9			
360,00 min	=	1,5	1,7	1,8	2,0	4,2			
420,00 min	-	1,3	1,5	1,6	1,8	3,8			
480,00 min	-	1,2	1,3	1,5	1,6	3,4			
600,00 min	-	1,0	1,1	1,2	1,4	2,8			
900,00 min	-	0,7	0,8	0,9	1,0	2,1			
1200,00 min	=	0,6	0,7	0,7	0,8	1,7			
1440,00 min	-	0,5	0,6	0,6	0,7	1,4			

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
3,1	1,3	1,5	1,6	1,9	3,9
10,00 min	2,3	2,7	3,0	3,4	7,3
20,00 min	4,2	3,9	4,3	4,9	10,5
30,00 min	4,1	4,8	5,3	6,0	13,0
40,00 min	4,7	5,6	6,2	7,0	15,1
50,00 min	5,3	6,3	6,9	7,9	17,0
60,00 min	5,2	6,2	6,8	7,8	16,8
70,00 min	5,4	6,4	7,0	8,0	17,3
80,00 min	5,5	6,5	7,2	8,2	17,8
90,00 min	5,6	6,6	7,3	8,4	18,2
100,00 min	5,7	6,8	7,5	8,5	18,6
120,00 min	5,9	7,0	7,7	8,8	19,2
140,00 min	6,0	7,1	7,9	9,0	19,8
160,00 min	6,1	7,2	8,0	9,1	20,3
180,00 min	6,2	7,3	8,1	9,3	20,7
200,00 min	6,3	7,4	8,2	9,4	21,1
220,00 min	6,3	7,5	8,3	9,5	21,4
240,00 min	6,4	7,5	8,4	9,6	21,7
300,00 min	6,4	7,6	8,5	9,8	22,5
360,00 min	6,4	7,7	8,6	9,9	23,1
420,00 min	6,4	7,6	8,6	9,9	23,6
480,00 min	6,3	7,6	8,5	9,9	23,9
600,00 min	6,0	7,4	8,3	9,8	24,5
900,00 min	5,1	6,6	7,6	9,1	25,2
1200,00 min	3,9	5,5	6,5	8,2	25,2
1440,00 min	2,9	4,5	5,6	7,2	25,0
Débit de fuite (m³/h)	0,20	0,20	0,20	0,20	0,20
Volume maxi à stocker (m³)	6,4	8	9	10	25
Temps moyen de résidence (h)	1,5	1,7	1,9	2,2	5,7
Temps de vidange (h)	2,9	3,5	3,9	4,5	11,4

Volume bassin (m3)	6,4
Longueur extérieure (m)	5,6
Largeur extérieure (m)	3,50
Profondeur max (m)	0,50
Pente talus (°)	30,0

Longueur fond du bassin	3,9
Largeur fond du bassin	1.8

Calcul du volume à stocker (Méthode des pluies) **Puits d'infiltration**

Coefficient d'apport

	Surface (m ²)		Fréquence de retour de la pluie					
		10 ans	20 ans	30 ans	50 ans	100 ans		
Espaces verts	300	0,1	0,11	0,12	0,15	0,85		
Pavés	0	0,8	0,85	0,95	0,95	0,95		
Stabilisé/graviers	0	0,25	0,27	0,30	0,37	0,85		
Voiries / parking	0	0,95	0,95	0,95	0,95	0,95		
terrain de sport	0	0,2	0,21	0,24	0,30	0,85		
Toitures bâtiments	200	0,95	0,95	0,95	0,95	0,95		
Total	500	0,44	0,44	0,45	0,47	0,89		

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	0	0	0	0	0
Surface projet (ha)	0,05	0,05	0,05	0,05	0,05
Coefficient d'apport	0,44	0,44	0,45	0,47	0,89
Surface active (ha)	0,02	0,02	0,02	0,02	0,04
Débit permis (l/s)	0,00	0,00	0,00	0,00	0,00
Diamètre théorique buse de fuite (m)	0,000	0,000	0,000	0,000	0,000
Diamètre retenu (m)	0,000	0,000	0,000	0,000	0,000
Hauteur d'eau (m)	1,0	1,0	1,0	1,0	1,0
Débit maxi de la buse (l/s)	0,00	0,00	0,00	0,00	0,00
Débit maxi de la buse (m³/h)	0,0	0,0	0,0	0,0	0,0
Vitesse ascensionnelle (m/h)	0,00	0,00	0,00	0,00	0,00

Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	16,1					
K (m/h)	0,010					
débit infiltré (m3/h)		0,2	0,2	0,2	0,2	0,2

Temps de concentrationTc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Surface de la parcelle (ha)	0,0500	0,0500	0,0500	0,0500	0,0500
Coefficient de ruissellement	0,4400	0,4438	0,4517	0,4696	0,8900
Pente moyenne de la parcelle	0,018	0,018	0,018	0,018	0,018
Temps de concentration (Tc)	3,1	3,1	3,1	3,1	2,4

Intensité maximale (i) de la pluie de durée t (en mm/h) $i = a \times t^{(-b)}$

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
3,1	112,7	130,5	140,6	153,5	169,9
10,00 min	65,3	75,7	81,6	89,0	99,0
20,00 min	58,7	54,7	58,9	64,3	71,6
30,00 min	39,0	45,2	48,7	53,2	59,3
40,00 min	34,1	39,5	42,6	46,5	51,9
50,00 min	30,7	35,6	38,4	41,9	46,7
60,00 min	25,6	29,7	32,0	34,8	38,7
70,00 min	22,8	26,4	28,4	30,9	34,3
80,00 min	20,6	23,8	25,6	27,8	30,9
90,00 min	18,9	21,7	23,4	25,4	28,2
100,00 min	17,4	20,1	21,6	23,4	25,9
120,00 min	15,2	17,4	18,7	20,3	22,5
140,00 min	13,5	15,5	16,7	18,0	19,9
160,00 min	12,2	14,0	15,0	16,3	18,0
180,00 min	11,2	12,8	13,7	14,8	16,4
200,00 min	10,3	11,8	12,7	13,7	15,1
220,00 min	9,6	11,0	11,8	12,7	14,0
240,00 min	9,0	10,3	11,0	11,9	13,1
300,00 min	7,6	8,7	9,3	10,0	11,0
360,00 min	6,6	7,5	8,0	8,7	9,5
420,00 min	5,9	6,7	7,1	7,7	8,4
480,00 min	5,3	6,0	6,4	6,9	7,6
600,00 min	4,5	5,1	5,4	5,8	6,4
900,00 min	3,3	3,7	4,0	4,3	4,7
1200,00 min	2,7	3,0	3,2	3,4	3,7
1440,00 min	2,3	2,6	2,8	3,0	3,2
a (6-60')	3,214	3,715	4,004	4,370	4,823
b (6-60')	0,470	0,469	0,469	0,469	0,466
A (30-1440')	9,357	11,329	12,468	13,912	15,842
B (30-1440')	0,754	0,765	0,770	0,776	0,782

t	Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans	
3,1	24,8	28,9	31,8	36,0	75,6	
10,00 min	14,4	16,8	18,4	20,9	44,0	
20,00 min	12,9	12,1	13,3	15,1	31,9	
30,00 min	8,6	10,0	11,0	12,5	26,4	
40,00 min	7,5	8,8	9,6	10,9	23,1	
50,00 min	6,7	7,9	8,7	9,8	20,8	
60,00 min	5,6	6,6	7,2	8,2	17,2	
70,00 min	5,0	5,8	6,4	7,3	15,3	
80,00 min	4,5	5,3	5,8	6,5	13,7	
90,00 min	4,2	4,8	5,3	6,0	12,5	
100,00 min	3,8	4,5	4,9	5,5	11,5	
120,00 min	3,3	3,9	4,2	4,8	10,0	
140,00 min	3,0	3,4	3,8	4,2	8,9	
160,00 min	2,7	3,1	3,4	3,8	8,0	
180,00 min	2,5	2,8	3,1	3,5	7,3	
200,00 min	2,3	2,6	2,9	3,2	6,7	
220,00 min	2,1	2,4	2,7	3,0	6,2	
240,00 min	2,0	2,3	2,5	2,8	5,8	
300,00 min	1,7	1,9	2,1	2,3	4,9	
360,00 min	1,5	1,7	1,8	2,0	4,2	
420,00 min	1,3	1,5	1,6	1,8	3,8	
480,00 min	1,2	1,3	1,5	1,6	3,4	
600,00 min	1,0	1,1	1,2	1,4	2,8	
900,00 min	0,7	0,8	0,9	1,0	2,1	
1200,00 min	0,6	0,7	0,7	0,8	1,7	
1440,00 min	0,5	0,6	0,6	0,7	1,4	

t		Fréquei	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
3,1	1,3	1,5	1,6	1,9	3,9
10,00 min	2,3	2,7	3,0	3,4	7,3
20,00 min	4,2	3,9	4,3	4,9	10,5
30,00 min	4,1	4,9	5,3	6,1	13,0
40,00 min	4,8	5,6	6,2	7,1	15,2
50,00 min	5,4	6,3	7,0	7,9	17,1
60,00 min	5,3	6,3	6,9	7,9	16,9
70,00 min	5,5	6,4	7,1	8,1	17,4
80,00 min	5,6	6,6	7,3	8,3	17,9
90,00 min	5,7	6,8	7,4	8,5	18,3
100,00 min	5,9	6,9	7,6	8,6	18,7
120,00 min	6,0	7,1	7,8	8,9	19,4
140,00 min	6,2	7,3	8,0	9,1	20,0
160,00 min	6,3	7,4	8,2	9,3	20,5
180,00 min	6,4	7,6	8,3	9,5	20,9
200,00 min	6,5	7,7	8,5	9,6	21,3
220,00 min	6,6	7,7	8,6	9,8	21,7
240,00 min	6,6	7,8	8,6	9,9	22,0
300,00 min	6,8	8,0	8,8	10,1	22,8
360,00 min	6,8	8,1	9,0	10,3	23,5
420,00 min	6,8	8,1	9,0	10,4	24,1
480,00 min	6,8	8,1	9,1	10,4	24,5
600,00 min	6,7	8,1	9,0	10,5	25,2
900,00 min	6,1	7,6	8,6	10,2	26,2
1200,00 min	5,3	6,9	7,9	9,6	26,6
1440,00 min	4,6	6,2	7,3	8,9	26,7
Débit de fuite (m³/h)	0,16	0,16	0,16	0,16	0,16
Volume maxi à stocker (m³)	6,8	8	9	10	27
Temps moyen de résidence (h)	1,6	1,9	2,1	2,4	6,1
Temps de vidange (h)	3,1	3,7	4,1	4,8	12,2

Volume bassin (m3)	6,8
Diamètre (m)	2,95
Surface (m ²)	16,1
Profondeur max (m)	1,00
Porosité	1,00

Longueur fond du bassin	0,0
Largeur fond du bassin	0,0

Calcul du volume à stocker (Méthode des pluies) Tranchées d'infiltration

Coefficient d'apport

	Surface (m²)		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans	
Espaces verts	300	0,1	0,11	0,12	0,15	0,85	
Pavés	0	0,8	0,85	0,95	0,95	0,95	
Stabilisé/graviers	0	0,25	0,27	0,30	0,37	0,85	
Voiries / parking	0	0,95	0,95	0,95	0,95	0,95	
terrain de sport	0	0,2	0,21	0,24	0,30	0,85	
Toitures bâtiments	200	0,95	0,95	0,95	0,95	0,95	
Total	500	0,44	0,44	0,45	0,47	0,89	

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	0,05	0,05	0,05	0,05	0,05
Coefficient d'apport	0,44	0,44	0,45	0,47	0,89
Surface active (ha)	0,02	0,02	0,02	0,02	0,04
Débit permis (l/s)	0,15	0,15	0,15	0,15	0,15
Diamètre théorique buse de fuite (m)	0,010	0,010	0,010	0,010	0,010
Diamètre retenu (m)	0,000	0,050	0,050	0,050	0,050
Hauteur d'eau (m)	0,6	0,6	0,6	0,6	0,6
Débit maxi de la buse (l/s)	0,00	4,07	4,07	4,07	4,07
Débit maxi de la buse (m³/h)	0,0	14,6	14,6	14,6	14,6
Vitesse ascensionnelle (m/h)	0,00	0,00	0,00	0,00	0,00

Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	24,5					
K (m/h)	0,010					
débit infiltré (m3/h)		0,2	0,2	0,2	0,2	0,2

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie					
	10 ans	20 ans	30 ans	50 ans	100 ans		
Surface de la parcelle (ha)	0,0500	0,0500	0,0500	0,0500	0,0500		
Coefficient de ruissellement	0,4400	0,4438	0,4517	0,4696	0,8900		
Pente moyenne de la parcelle	0,018	0,018	0,018	0,018	0,018		
Tomps do concentration (Ta)	3.1	3.1	3.1	3.1	2.4		

3,1 3,1 3,1 3,1 Intensité maximale (i) de la pluie de durée t (en mm/h)

 $i = a \times t^{(-b)}$

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
3,1	112,7	130,5	140,6	153,5	169,9
10,00 min	65,3	75,7	81,6	89,0	99,0
20,00 min	58,7	54,7	58,9	64,3	71,6
30,00 min	39,0	45,2	48,7	53,2	59,3
40,00 min	34,1	39,5	42,6	46,5	51,9
50,00 min	30,7	35,6	38,4	41,9	46,7
50,00 min	25,6	29,7	32,0	34,8	38,7
70,00 min	22,8	26,4	28,4	30,9	34,3
30,00 min	20,6	23,8	25,6	27,8	30,9
90,00 min	18,9	21,7	23,4	25,4	28,2
100,00 min	17,4	20,1	21,6	23,4	25,9
20,00 min	15,2	17,4	18,7	20,3	22,5
140,00 min	13,5	15,5	16,7	18,0	19,9
160,00 min	12,2	14,0	15,0	16,3	18,0
180,00 min	11,2	12,8	13,7	14,8	16,4
200,00 min	10,3	11,8	12,7	13,7	15,1
220,00 min	9,6	11,0	11,8	12,7	14,0
240,00 min	9,0	10,3	11,0	11,9	13,1
300,00 min	7,6	8,7	9,3	10,0	11,0
360,00 min	6,6	7,5	8,0	8,7	9,5
120,00 min	5,9	6,7	7,1	7,7	8,4
180,00 min	5,3	6,0	6,4	6,9	7,6
500,00 min	4,5	5,1	5,4	5,8	6,4
900,00 min	3,3	3,7	4,0	4,3	4,7
1200,00 min	2,7	3,0	3,2	3,4	3,7
1440,00 min	2,3	2,6	2,8	3,0	3,2
a (6-60')	3,214	3,715	4,004	4,370	4,823
0 (6-60')	0,470	0,469	0,469	0,469	0,466
A (30-1440')	9,357	11,329	12,468	13,912	15,842
3 (30-1440')	0,754	0,765	0,770	0,776	0,782

t	Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans	
3,1	24,8	28,9	31,8	36,0	75,6	
10,00 min	14,4	16,8	18,4	20,9	44,0	
20,00 min	12,9	12,1	13,3	15,1	31,9	
30,00 min	8,6	10,0	11,0	12,5	26,4	
40,00 min	7,5	8,8	9,6	10,9	23,1	
50,00 min	6,7	7,9	8,7	9,8	20,8	
60,00 min	5,6	6,6	7,2	8,2	17,2	
70,00 min	5,0	5,8	6,4	7,3	15,3	
80,00 min	4,5	5,3	5,8	6,5	13,7	
90,00 min	4,2	4,8	5,3	6,0	12,5	
100,00 min	3,8	4,5	4,9	5,5	11,5	
120,00 min	3,3	3,9	4,2	4,8	10,0	
140,00 min	3,0	3,4	3,8	4,2	8,9	
160,00 min	2,7	3,1	3,4	3,8	8,0	
180,00 min	2,5	2,8	3,1	3,5	7,3	
200,00 min	2,3	2,6	2,9	3,2	6,7	
220,00 min	2,1	2,4	2,7	3,0	6,2	
240,00 min	2,0	2,3	2,5	2,8	5,8	
300,00 min	1,7	1,9	2,1	2,3	4,9	
360,00 min	1,5	1,7	1,8	2,0	4,2	
420,00 min	1,3	1,5	1,6	1,8	3,8	
480,00 min	1,2	1,3	1,5	1,6	3,4	
600,00 min	1,0	1,1	1,2	1,4	2,8	
900,00 min	0,7	0,8	0,9	1,0	2,1	
1200,00 min	0,6	0,7	0,7	0,8	1,7	
1440,00 min	0,5	0,6	0,6	0,7	1,4	

t		Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans	
3,1	1,3	1,5	1,6	1,9	3,9	
10,00 min	2,3	2,7	3,0	3,4	7,3	
20,00 min	4,1	3,9	4,3	4,9	10,5	
30,00 min	4,0	4,8	5,3	6,0	13,0	
40,00 min	4,7	5,5	6,1	6,9	15,1	
50,00 min	5,2	6,2	6,8	7,8	16,9	
60,00 min	5,1	6,1	6,7	7,7	16,7	
70,00 min	5,3	6,3	6,9	7,9	17,2	
80,00 min	5,4	6,4	7,1	8,1	17,7	
90,00 min	5,5	6,5	7,2	8,2	18,1	
100,00 min	5,6	6,6	7,3	8,3	18,4	
120,00 min	5,7	6,8	7,5	8,6	19,0	
140,00 min	5,8	6,9	7,6	8,7	19,6	
160,00 min	5,9	7,0	7,7	8,9	20,0	
180,00 min	5,9	7,0	7,8	9,0	20,4	
200,00 min	5,9	7,1	7,9	9,1	20,7	
220,00 min	6,0	7,1	7,9	9,1	21,0	
240,00 min	6,0	7,2	8,0	9,2	21,3	
300,00 min	5,9	7,2	8,0	9,3	22,0	
360,00 min	5,8	7,1	8,0	9,3	22,5	
420,00 min	5,7	7,0	7,9	9,2	22,9	
480,00 min	5,5	6,8	7,7	9,1	23,2	
600,00 min	5,0	6,4	7,4	8,8	23,5	
900,00 min	3,6	5,1	6,1	7,6	23,7	
1200,00 min	2,0	3,5	4,6	6,2	23,3	
1440,00 min	0,6	2,1	3,2	4,9	22,7	
Débit de fuite (m³/h)	0,25	0,25	0,25	0,25	0,25	
Volume maxi à stocker (m³)	6,0	7	8	9	24	
Temps moyen de résidence (h)	1,3	1,6	1,8	2,1	5,3	
Temps de vidange (h)	2,7	3,2	3,6	4,1	10,6	

Volume total (m3)	14,7
Longueur extérieure (m)	49,0
Largeur extérieure (m)	0,5
Profondeur utile (m)	0,60
Pente talus (°)	90,0
Volume utile	5,9

Longueur fond du bassin	49,0
Largeur fond du bassin	0,5
Porosité	0,4

ANNEXE 2 : Calculs hydrauliques des ouvrages collectifs

Calcul du volume à stocker (Méthode des pluies) Secteur n°1 – 1AUb « La Léverie »

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	5700	0,1	0,11	0,12	0,15	0,85
Pavés	0	0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers	0	0,25	0,27	0,30	0,37	0,85
Voiries / parking	0	0,95	0,95	0,95	0,95	0,95
terrain de sport	0	0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	5700	0,95	0,95	0,95	0,95	0,95
Total	11400	0,53	0,53	0,53	0,55	0,90

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	1,14	1,14	1,14	1,14	1,14
Coefficient d'apport	0,53	0,53	0,53	0,55	0,90
Surface active (ha)	0,6	0,6	0,61	0,63	1,03
Débit permis (l/s)	3,42	3,42	3,42	3,42	3,42
Diamètre théorique buse de fuite (m)	0,044	0,044	0,044	0,044	0,044
Diamètre retenu (m)	0,044	0,050	0,050	0,050	0,050
Hauteur d'eau (m)	0,7	0,7	0,7	0,7	0,7
Débit maxi de la buse (l/s)	3,42	4,39	4,39	4,39	4,39
Débit maxi de la buse (m³/h)	12,3	15,8	15,8	15,8	15,8
Vitesse ascensionnelle (m/h)	0,05	0,05	0,05	0,05	0,05

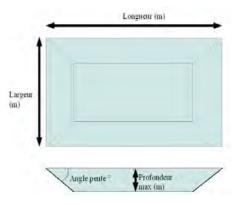
Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	272					
K (m/h)	0,010					
débit infiltré (m3/h)		2,7	2,7	2,7	2,7	2,7

Temps de concentrationTc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie			
	10 ans	20 ans	30 ans	50 ans	100 ans
Surface de la parcelle (ha)	1,1400	1,1400	1,1400	1,1400	1,1400
Coefficient de ruissellement	0,5250	0,5281	0,5348	0,5497	0,9000
Pente moyenne de la parcelle	0,018	0,018	0,018	0,018	0,018
Temps de concentration (Tc)	8.8	8.8	8.7	8.7	7.3

| 8,8 | 8,8 | 8,7 | Intensité maximale (i) de la pluie de durée t (en mm/h) i = a x t^(-b)


t		Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans		
3,8	69,4	80,4	86,6	94,6	105,0		
10,00 min	65,3	75,7	81,6	89,0	99,0		
20,00 min	58,7	54,7	58,9	64,3	71,6		
30,00 min	39,0	45,2	48,7	53,2	59,3		
10,00 min	34,1	39,5	42,6	46,5	51,9		
50,00 min	30,7	35,6	38,4	41,9	46,7		
50,00 min	25,6	29,7	32,0	34,8	38,7		
70,00 min	22,8	26,4	28,4	30,9	34,3		
30,00 min	20,6	23,8	25,6	27,8	30,9		
00,00 min	18,9	21,7	23,4	25,4	28,2		
100,00 min	17,4	20,1	21,6	23,4	25,9		
20,00 min	15,2	17,4	18,7	20,3	22,5		
40,00 min	13,5	15,5	16,7	18,0	19,9		
60,00 min	12,2	14,0	15,0	16,3	18,0		
80,00 min	11,2	12,8	13,7	14,8	16,4		
00,00 min	10,3	11,8	12,7	13,7	15,1		
20,00 min	9,6	11,0	11,8	12,7	14,0		
40,00 min	9,0	10,3	11,0	11,9	13,1		
00,00 min	7,6	8,7	9,3	10,0	11,0		
60,00 min	6,6	7,5	8,0	8,7	9,5		
20,00 min	5,9	6,7	7,1	7,7	8,4		
80,00 min	5,3	6,0	6,4	6,9	7,6		
00,00 min	4,5	5,1	5,4	5,8	6,4		
900,00 min	3,3	3,7	4,0	4,3	4,7		
200,00 min	2,7	3,0	3,2	3,4	3,7		
440,00 min	2,3	2,6	2,8	3,0	3,2		
(6-60')	3,214	3,715	4,004	4,370	4,823		
(6-60')	0,470	0,469	0,469	0,469	0,466		
A (30-1440')	9,357	11,329	12,468	13,912	15,842		
B (30-1440')	0,754	0,765	0,770	0,776	0,782		

t	Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
8,8	415,3	483,9	528,2	592,5	1077,7
10,00 min	391,1	455,8	497,4	558,0	1015,4
20,00 min	351,1	329,3	359,4	403,2	735,1
30,00 min	233,4	272,3	297,1	333,3	608,5
40,00 min	203,8	237,9	259,6	291,3	532,2
50,00 min	183,5	214,3	233,8	262,3	479,6
60,00 min	153,3	178,5	194,9	218,1	396,8
70,00 min	136,5	158,7	173,1	193,5	351,8
80,00 min	123,4	143,3	156,2	174,5	316,9
90,00 min	112,9	130,9	142,6	159,3	289,0
100,00 min	104,3	120,8	131,5	146,7	266,1
120,00 min	90,9	105,1	114,3	127,4	230,8
140,00 min	80,9	93,4	101,5	113,0	204,6
160,00 min	73,2	84,3	91,6	101,9	184,3
180,00 min	67,0	77,0	83,6	93,0	168,1
200,00 min	61,9	71,1	77,1	85,7	154,8
220,00 min	57,6	66,1	71,7	79,6	143,7
240,00 min	53,9	61,8	67,0	74,4	134,2
300,00 min	45,6	52,1	56,4	62,6	112,7
360,00 min	39,7	45,3	49,1	54,3	97,7
420,00 min	35,4	40,3	43,6	48,2	86,6
480,00 min	32,0	36,4	39,3	43,4	78,1
600,00 min	27,0	30,7	33,1	36,5	65,6
900,00 min	19,9	22,5	24,2	26,7	47,7
1200,00 min	16,0	18,0	19,4	21,3	38,1
1440,00 min	14,0	15,7	16,9	18,5	33,1

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
8,8	58,7	68,8	75,3	84,7	155,9
10,00 min	62,7	73,5	80,4	90,5	166,7
20,00 min	112,0	104,8	114,8	129,4	240,0
30,00 min	109,2	128,6	141,0	159,2	296,7
40,00 min	125,9	148,6	163,1	184,2	344,8
50,00 min	140,4	166,0	182,3	206,1	387,2
60,00 min	138,3	163,5	179,9	203,1	381,8
70,00 min	141,7	167,6	184,4	208,3	392,8
80,00 min	144,5	171,0	188,2	212,6	402,5
90,00 min	146,9	173,8	191,4	216,3	410,9
100,00 min	148,8	176,2	194,2	219,5	418,5
120,00 min	151,8	180,0	198,5	224,7	431,5
140,00 min	153,8	182,8	201,8	228,7	442,2
160,00 min	155,1	184,7	204,2	231,7	451,3
180,00 min	155,8	186,0	205,8	233,9	459,1
200,00 min	156,1	186,8	207,0	235,6	465,8
220,00 min	156,0	187,2	207,7	236,7	471,6
240,00 min	155,5	187,1	208,0	237,4	476,7
300,00 min	152,6	185,4	207,1	237,7	488,4
360,00 min	148,1	181,8	204,1	235,7	496,3
420,00 min	142,2	176,8	199,7	232,1	501,3
480,00 min	135,5	170,8	194,2	227,3	504,2
600,00 min	119,8	156,4	180,7	215,0	505,2
900,00 min	73,0	111,9	137,9	174,6	490,6
1200,00 min	19,8	60,3	87,6	126,1	461,8
1440,00 min	0,0	16,0	44,1	83,8	432,6
Débit de fuite (m³/h)	12	12	12	12	12
Volume maxi à stocker (m³)	156	187	208	238	505
Temps moyen de résidence (h)	9,4	11,3	12,6	14,4	30,5
Temps de vidange (h)	18,9	22,6	25,2	28,7	61,1

Volume bassin (m3)	156,1
Longueur extérieure (m)	34,0
Largeur extérieure (m)	8,0
Profondeur max (m)	0,70
Pente talus (°)	30,0

272,0	Longueur fond du bassin	31,6
	Largeur fond du bassin	5,6

Calcul du volume à stocker (Méthode des pluies) Secteur n°2 – 1AUb « Rue des Platanes 1 »

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	3750	0,1	0,11	0,12	0,15	0,85
Pavés		0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers		0,25	0,27	0,30	0,37	0,85
Voiries / parking		0,95	0,95	0,95	0,95	0,95
terrain de sport		0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	3750	0,95	0,95	0,95	0,95	0,95
Total	7500	0,53	0,53	0,53	0,55	0,90

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	0,75	0,75	0,75	0,75	0,75
Coefficient d'apport	0,53	0,53	0,53	0,55	0,90
Surface active (ha)	0,39	0,4	0,4	0,41	0,68
Débit permis (l/s)	2,25	2,25	2,25	2,25	2,25
Diamètre théorique buse de fuite (m)	0,036	0,036	0,036	0,036	0,036
Diamètre retenu (m)	0,036	0,050	0,050	0,050	0,050
Hauteur d'eau (m)	0,7	0,7	0,7	0,7	0,7
Débit maxi de la buse (l/s)	2,25	4,39	4,39	4,39	4,39
Débit maxi de la buse (m³/h)	8,1	15,8	15,8	15,8	15,8
Vitesse ascensionnelle (m/h)	0,04	0,04	0,04	0,04	0,04

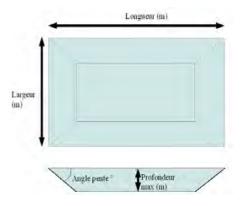
Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	184					
K (m/h)	0,010					
débit infiltré (m3/h)		1,8	1,8	1,8	1,8	1,8

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans	
Surface de la parcelle (ha)	0,7500	0,7500	0,7500	0,7500	0,7500	
Coefficient de ruissellement	0,5250	0,5281	0,5348	0,5497	0,9000	
Pente moyenne de la parcelle	0,007	0,007	0,007	0,007	0,007	
Temps de concentration (Tc)	12.2	12.2	12.1	12.0	10.1	

Intensité maximale (i) de la pluie de durée t (en mm/h) i = a x t^(-b)


t	Fréquence de retour de la pluie						
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans		
12,2	59,5	69,0	74,4	81,2	90,2		
20,00 min	47,2	54,7	58,9	64,3	71,6		
30,00 min	43,2	45,2	48,7	53,2	59,3		
40,00 min	34,1	39,5	42,6	46,5	51,9		
50,00 min	30,7	35,6	38,4	41,9	46,7		
60,00 min	28,1	32,7	35,2	38,4	42,9		
70,00 min	22,8	26,4	28,4	30,9	34,3		
80,00 min	20,6	23,8	25,6	27,8	30,9		
90,00 min	18,9	21,7	23,4	25,4	28,2		
100,00 min	17,4	20,1	21,6	23,4	25,9		
110,00 min	16,2	18,6	20,0	21,7	24,1		
120,00 min	15,2	17,4	18,7	20,3	22,5		
140,00 min	13,5	15,5	16,7	18,0	19,9		
160,00 min	12,2	14,0	15,0	16,3	18,0		
180,00 min	11,2	12,8	13,7	14,8	16,4		
200,00 min	10,3	11,8	12,7	13,7	15,1		
220,00 min	9,6	11,0	11,8	12,7	14,0		
240,00 min	9,0	10,3	11,0	11,9	13,1		
300,00 min	7,6	8,7	9,3	10,0	11,0		
360,00 min	6,6	7,5	8,0	8,7	9,5		
420,00 min	5,9	6,7	7,1	7,7	8,4		
480,00 min	5,3	6,0	6,4	6,9	7,6		
600,00 min	4,5	5,1	5,4	5,8	6,4		
900,00 min	3,3	3,7	4,0	4,3	4,7		
1200,00 min	2,7	3,0	3,2	3,4	3,7		
1440,00 min	2,3	2,6	2,8	3,0	3,2		
a (6-60')	3,214	3,715	4,004	4,370	4,823		
b (6-60')	0,470	0,469	0,469	0,469	0,466		
A (30-1440')	9,357	11,329	12,468	13,912	15,842		
B (30-1440')	0,754	0,765	0,770	0,776	0,782		

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
12,2	234,4	273,3	298,2	334,6	609,2
20,00 min	185,8	216,6	236,4	265,2	483,6
30,00 min	170,1	179,1	195,5	219,3	400,3
40,00 min	134,1	156,5	170,8	191,6	350,1
50,00 min	120,8	141,0	153,8	172,6	315,5
60,00 min	110,8	129,4	141,2	158,4	289,8
70,00 min	89,8	104,4	113,9	127,3	231,4
80,00 min	81,2	94,2	102,8	114,8	208,5
90,00 min	74,3	86,1	93,8	104,8	190,1
100,00 min	68,6	79,5	86,5	96,5	175,1
110,00 min	63,9	73,9	80,4	89,7	162,5
120,00 min	59,8	69,1	75,2	83,8	151,8
140,00 min	53,3	61,4	66,8	74,4	134,6
160,00 min	48,2	55,5	60,3	67,0	121,2
180,00 min	44,1	50,7	55,0	61,2	110,6
200,00 min	40,7	46,8	50,7	56,4	101,8
220,00 min	37,9	43,5	47,2	52,4	94,5
240,00 min	35,5	40,7	44,1	48,9	88,3
300,00 min	30,0	34,3	37,1	41,2	74,2
360,00 min	26,1	29,8	32,3	35,7	64,3
420,00 min	23,3	26,5	28,7	31,7	57,0
480,00 min	21,0	23,9	25,9	28,6	51,3
600,00 min	17,8	20,2	21,8	24,0	43,1
900,00 min	13,1	14,8	15,9	17,5	31,4
1200,00 min	10,5	11,9	12,8	14,0	25,1
1440,00 min	9,2	10,3	11,1	12,2	21,7

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
12,2	45,6	53,5	58,6	65,9	121,7
20,00 min	58,6	68,9	75,5	85,1	157,9
30,00 min	80,1	84,6	92,8	104,7	195,2
40,00 min	82,8	97,7	107,2	121,1	226,8
50,00 min	92,3	109,2	119,9	135,5	254,7
60,00 min	100,9	119,5	131,3	148,5	279,9
70,00 min	93,2	110,2	121,3	137,0	258,4
80,00 min	95,0	112,4	123,8	139,8	264,7
90,00 min	96,5	114,3	125,9	142,2	270,3
100,00 min	97,8	115,9	127,7	144,3	275,3
110,00 min	98,9	117,2	129,2	146,2	279,7
120,00 min	99,7	118,3	130,5	147,7	283,8
140,00 min	101,1	120,1	132,6	150,3	290,8
160,00 min	101,9	121,4	134,2	152,3	296,8
180,00 min	102,4	122,2	135,3	153,7	301,9
200,00 min	102,5	122,7	136,0	154,8	306,3
220,00 min	102,4	122,9	136,4	155,5	310,1
240,00 min	102,1	122,9	136,6	156,0	313,4
300,00 min	100,2	121,7	136,0	156,1	321,1
360,00 min	97,1	119,3	134,0	154,7	326,2
420,00 min	93,2	116,0	131,0	152,3	329,4
480,00 min	88,7	111,9	127,4	149,1	331,3
600,00 min	78,3	102,4	118,4	141,0	331,9
900,00 min	47,3	72,8	90,0	114,1	322,0
1200,00 min	12,0	38,7	56,6	81,9	302,8
1440,00 min	0,0	9,3	27,8	53,9	283,4
Débit de fuite (m³/h)	8	8	8	8	8
Volume maxi à stocker (m³)	103	123	137	156	332
Temps moyen de résidence (h)	8,3	10,0	11,1	12,7	26,9
Temps de vidange (h)	16,6	19,9	22,2	25,3	53,8

Volume bassin (m3)	103,9
Longueur extérieure (m)	23,0
Largeur extérieure (m)	8,0
Profondeur max (m)	0,70
Pente talus (°)	30,0

Longueur fond du bassin	20,6
Largeur fond du bassin	5,6

Calcul du volume à stocker (Méthode des pluies) Secteur n°3 – 1AUb « Rue des Platanes 2 »

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	1935	0,1	0,11	0,12	0,15	0,85
Pavés		0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers		0,25	0,27	0,30	0,37	0,85
Voiries / parking		0,95	0,95	0,95	0,95	0,95
terrain de sport		0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	1935	0,95	0,95	0,95	0,95	0,95
Total	3870	0,53	0,53	0,53	0,55	0,90

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	0,39	0,39	0,39	0,39	0,39
Coefficient d'apport	0,53	0,53	0,53	0,55	0,90
Surface active (ha)	0,2	0,2	0,21	0,21	0,35
Débit permis (l/s)	1,16	1,16	1,16	1,16	1,16
Diamètre théorique buse de fuite (m)	0,028	0,028	0,028	0,028	0,028
Diamètre retenu (m)	0,028	0,050	0,050	0,050	0,050
Hauteur d'eau (m)	0,5	0,5	0,5	0,5	0,5
Débit maxi de la buse (l/s)	1,16	3,71	3,71	3,71	3,71
Débit maxi de la buse (m³/h)	4,2	13,4	13,4	13,4	13,4
Vitesse ascensionnelle (m/h)	0,03	0,03	0,03	0,03	0,03

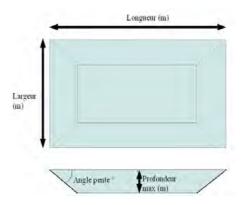
Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	124					
K (m/h)	0,010					
débit infiltré (m3/h)		1,2	1,2	1,2	1,2	1,2

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans	
Surface de la parcelle (ha)	0,3870	0,3870	0,3870	0,3870	0,3870	
Coefficient de ruissellement	0,5250	0,5281	0,5348	0,5497	0,9000	
Pente moyenne de la parcelle	0,007	0,007	0,007	0,007	0,007	
Temps de concentration (Tc)	9,7	9,6	9,6	9,5	8,0	

Intensité maximale (i) de la pluie de durée t (en mm/h) i = a x t^(-b)


t		Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans		
9,7	66,4	76,9	82,9	90,5	100,5		
10,00 min	65,3	75,7	81,6	89,0	99,0		
20,00 min	58,7	54,7	58,9	64,3	71,6		
30,00 min	39,0	45,2	48,7	53,2	59,3		
40,00 min	34,1	39,5	42,6	46,5	51,9		
50,00 min	30,7	35,6	38,4	41,9	46,7		
60,00 min	25,6	29,7	32,0	34,8	38,7		
70,00 min	22,8	26,4	28,4	30,9	34,3		
80,00 min	20,6	23,8	25,6	27,8	30,9		
90,00 min	18,9	21,7	23,4	25,4	28,2		
100,00 min	17,4	20,1	21,6	23,4	25,9		
120,00 min	15,2	17,4	18,7	20,3	22,5		
140,00 min	13,5	15,5	16,7	18,0	19,9		
160,00 min	12,2	14,0	15,0	16,3	18,0		
180,00 min	11,2	12,8	13,7	14,8	16,4		
200,00 min	10,3	11,8	12,7	13,7	15,1		
220,00 min	9,6	11,0	11,8	12,7	14,0		
240,00 min	9,0	10,3	11,0	11,9	13,1		
300,00 min	7,6	8,7	9,3	10,0	11,0		
360,00 min	6,6	7,5	8,0	8,7	9,5		
420,00 min	5,9	6,7	7,1	7,7	8,4		
480,00 min	5,3	6,0	6,4	6,9	7,6		
600,00 min	4,5	5,1	5,4	5,8	6,4		
900,00 min	3,3	3,7	4,0	4,3	4,7		
1200,00 min	2,7	3,0	3,2	3,4	3,7		
1440,00 min	2,3	2,6	2,8	3,0	3,2		
a (6-60')	3,214	3,715	4,004	4,370	4,823		
b (6-60')	0,470	0,469	0,469	0,469	0,466		
A (30-1440')	9,357	11,329	12,468	13,912	15,842		
B (30-1440')	0,754	0,765	0,770	0,776	0,782		

t	Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
9,7	134,9	157,2	171,6	192,5	350,2
10,00 min	132,8	154,7	168,9	189,4	344,7
20,00 min	119,2	111,8	122,0	136,9	249,5
30,00 min	79,2	92,4	100,9	113,2	206,6
40,00 min	69,2	80,8	88,1	98,9	180,7
50,00 min	62,3	72,7	79,4	89,1	162,8
60,00 min	52,1	60,6	66,2	74,1	134,7
70,00 min	46,3	53,9	58,8	65,7	119,4
80,00 min	41,9	48,6	53,0	59,2	107,6
90,00 min	38,3	44,4	48,4	54,1	98,1
100,00 min	35,4	41,0	44,7	49,8	90,3
120,00 min	30,9	35,7	38,8	43,2	78,3
140,00 min	27,5	31,7	34,5	38,4	69,4
160,00 min	24,8	28,6	31,1	34,6	62,6
180,00 min	22,7	26,2	28,4	31,6	57,1
200,00 min	21,0	24,1	26,2	29,1	52,5
220,00 min	19,5	22,4	24,3	27,0	48,8
240,00 min	18,3	21,0	22,8	25,3	45,6
300,00 min	15,5	17,7	19,2	21,2	38,3
360,00 min	13,5	15,4	16,7	18,4	33,2
420,00 min	12,0	13,7	14,8	16,4	29,4
480,00 min	10,9	12,3	13,3	14,7	26,5
600,00 min	9,2	10,4	11,2	12,4	22,3
900,00 min	6,8	7,6	8,2	9,1	16,2
1200,00 min	5,4	6,1	6,6	7,2	12,9
1440,00 min	4,7	5,3	5,7	6,3	11,2

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
9,7	20,9	24,5	26,8	30,1	55,5
10,00 min	21,2	24,9	27,2	30,7	56,5
20,00 min	37,9	35,5	38,9	43,8	81,4
30,00 min	36,9	43,5	47,7	53,9	100,6
40,00 min	42,5	50,2	55,1	62,3	116,8
50,00 min	47,4	56,1	61,6	69,7	131,2
60,00 min	46,6	55,2	60,7	68,6	129,3
70,00 min	47,7	56,5	62,2	70,3	133,0
80,00 min	48,6	57,6	63,5	71,8	136,2
90,00 min	49,4	58,5	64,5	73,0	139,0
100,00 min	50,0	59,3	65,4	74,0	141,5
120,00 min	50,9	60,5	66,8	75,7	145,8
140,00 min	51,5	61,3	67,8	76,9	149,4
160,00 min	51,8	61,9	68,5	77,8	152,4
180,00 min	51,9	62,2	68,9	78,5	154,9
200,00 min	51,9	62,4	69,2	78,9	157,1
220,00 min	51,8	62,4	69,3	79,2	158,9
240,00 min	51,5	62,3	69,3	79,3	160,6
300,00 min	50,2	61,4	68,7	79,1	164,2
360,00 min	48,4	59,8	67,4	78,1	166,6
420,00 min	46,1	57,8	65,6	76,6	168,0
480,00 min	43,5	55,4	63,4	74,6	168,6
600,00 min	37,5	49,9	58,2	69,8	168,3
900,00 min	20,0	33,2	42,1	54,5	161,8
1200,00 min	0,4	14,1	23,4	36,5	150,4
1440,00 min	0,0	0,0	7,4	20,8	139,3
Débit de fuite (m³/h)	4	4	4	4	4
Volume maxi à stocker (m³)	52	62	69	79	169
Temps moyen de résidence (h)	6,2	7,4	8,2	9,4	20,1
Temps de vidange (h)	12,4	14,8	16,5	18,9	40,1

Volume bassin (m3)	52,3
Longueur extérieure (m)	15,5
Largeur extérieure (m)	8,0
Profondeur max (m)	0,50
Pente talus (°)	30,0

Longueur fond du bassin	13,8
Largeur fond du bassin	6,3

Calcul du volume à stocker (Méthode des pluies) Secteur n°4 – 1AUb « Torterelle »

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	22535	0,1	0,11	0,12	0,15	0,85
Pavés		0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers		0,25	0,27	0,30	0,37	0,85
Voiries / parking		0,95	0,95	0,95	0,95	0,95
terrain de sport		0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	22535	0,95	0,95	0,95	0,95	0,95
Total	45070	0,53	0,53	0,53	0,55	0,90

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	4,51	4,51	4,51	4,51	4,51
Coefficient d'apport	0,53	0,53	0,53	0,55	0,90
Surface active (ha)	2,37	2,38	2,41	2,48	4,06
Débit permis (l/s)	13,52	13,52	13,52	13,52	13,52
Diamètre théorique buse de fuite (m)	0,080	0,080	0,080	0,080	0,080
Diamètre retenu (m)	0,080	0,080	0,080	0,080	0,080
Hauteur d'eau (m)	1,0	1,0	1,0	1,0	1,0
Débit maxi de la buse (l/s)	13,52	13,52	13,52	13,52	13,52
Débit maxi de la buse (m³/h)	48,7	48,7	48,7	48,7	48,7
Vitesse ascensionnelle (m/h)	0,06	0,06	0,06	0,06	0,06

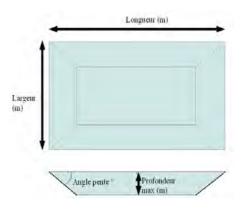
Calcul du débit infiltré

	ſ	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	776					
K (m/h)	0,010					
débit infiltré (m3/h)		7,8	7,8	7,8	7,8	7,8

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans	
Surface de la parcelle (ha)	4,5070	4,5070	4,5070	4,5070	4,5070	
Coefficient de ruissellement	0,5250	0,5281	0,5348	0,5497	0,9000	
Pente moyenne de la parcelle	0,015	0,015	0,015	0,015	0,015	
Temps de concentration (Tc)	15,6	15.6	15.5	15,3	12,9	

Intensité maximale (i) de la pluie de durée t (en mm/h) i = a x t^(-b)


t		Fréquer	ice de retour de	la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
15,6	53,0	61,5	66,2	72,3	80,5
20,00 min	47,2	54,7	58,9	64,3	71,6
30,00 min	43,2	45,2	48,7	53,2	59,3
40,00 min	34,1	39,5	42,6	46,5	51,9
50,00 min	30,7	35,6	38,4	41,9	46,7
60,00 min	28,1	32,7	35,2	38,4	42,9
70,00 min	22,8	26,4	28,4	30,9	34,3
80,00 min	20,6	23,8	25,6	27,8	30,9
90,00 min	18,9	21,7	23,4	25,4	28,2
100,00 min	17,4	20,1	21,6	23,4	25,9
110,00 min	16,2	18,6	20,0	21,7	24,1
120,00 min	15,2	17,4	18,7	20,3	22,5
140,00 min	13,5	15,5	16,7	18,0	19,9
160,00 min	12,2	14,0	15,0	16,3	18,0
180,00 min	11,2	12,8	13,7	14,8	16,4
200,00 min	10,3	11,8	12,7	13,7	15,1
220,00 min	9,6	11,0	11,8	12,7	14,0
240,00 min	9,0	10,3	11,0	11,9	13,1
300,00 min	7,6	8,7	9,3	10,0	11,0
360,00 min	6,6	7,5	8,0	8,7	9,5
420,00 min	5,9	6,7	7,1	7,7	8,4
480,00 min	5,3	6,0	6,4	6,9	7,6
600,00 min	4,5	5,1	5,4	5,8	6,4
900,00 min	3,3	3,7	4,0	4,3	4,7
1200,00 min	2,7	3,0	3,2	3,4	3,7
1440,00 min	2,3	2,6	2,8	3,0	3,2
a (6-60')	3,214	3,715	4,004	4,370	4,823
b (6-60')	0,470	0,469	0,469	0,469	0,466
A (30-1440')	9,357	11,329	12,468	13,912	15,842
B (30-1440')	0,754	0,765	0,770	0,776	0,782

t	Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
15,6	1254,7	1462,9	1596,5	1791,2	3263,3
20,00 min	1116,2	1301,8	1420,7	1593,9	2906,2
30,00 min	1022,3	1076,4	1174,7	1317,9	2405,8
40,00 min	805,9	940,5	1026,4	1151,6	2104,0
50,00 min	725,7	847,1	924,4	1037,1	1896,2
60,00 min	666,1	777,6	848,7	952,1	1741,7
70,00 min	539,7	627,3	684,3	765,2	1390,7
80,00 min	488,0	566,4	617,5	689,9	1252,8
90,00 min	446,5	517,6	563,9	629,6	1142,5
100,00 min	412,4	477,5	520,0	580,2	1052,2
110,00 min	383,8	443,9	483,2	538,8	976,6
120,00 min	359,4	415,3	451,9	503,6	912,4
140,00 min	320,0	369,1	401,3	446,9	808,8
160,00 min	289,4	333,3	362,1	402,9	728,6
180,00 min	264,8	304,6	330,7	367,7	664,5
200,00 min	244,5	281,0	304,9	338,8	611,9
220,00 min	227,6	261,2	283,4	314,7	568,0
240,00 min	213,1	244,4	265,0	294,1	530,6
300,00 min	180,1	206,0	223,2	247,4	445,6
360,00 min	157,0	179,2	193,9	214,7	386,4
420,00 min	139,8	159,3	172,2	190,5	342,5
480,00 min	126,4	143,8	155,4	171,8	308,6
600,00 min	106,8	121,2	130,9	144,4	259,2
900,00 min	78,7	88,9	95,8	105,5	188,7
1200,00 min	63,3	71,3	76,7	84,4	150,7
1440,00 min	55,2	62,1	66,7	73,2	130,7

t	Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans	
15,6	311,5	365,6	400,3	450,9	833,6	
20,00 min	353,3	415,1	454,8	512,5	949,9	
30,00 min	482,9	510,0	559,1	630,7	1174,7	
40,00 min	499,6	589,4	646,7	730,1	1365,0	
50,00 min	557,7	658,9	723,3	817,2	1533,1	
60,00 min	609,6	721,2	792,2	895,7	1685,3	
70,00 min	563,8	666,0	732,6	826,9	1556,6	
80,00 min	575,4	679,9	748,1	844,6	1595,1	
90,00 min	585,1	691,7	761,3	859,8	1629,2	
100,00 min	593,3	701,8	772,6	872,9	1659,6	
110,00 min	600,2	710,4	782,4	884,4	1687,0	
120,00 min	606,0	717,8	790,9	894,4	1711,9	
140,00 min	615,0	729,6	804,7	911,0	1755,4	
160,00 min	621,1	738,3	815,1	923,8	1792,4	
180,00 min	625,0	744,4	822,8	933,7	1824,1	
200,00 min	627,0	748,5	828,3	941,3	1851,6	
220,00 min	627,6	750,9	832,0	946,8	1875,6	
240,00 min	626,8	751,9	834,2	950,7	1896,7	
300,00 min	618,5	748,1	833,6	954,6	1946,0	
360,00 min	603,3	736,7	825,0	949,7	1979,9	
420,00 min	583,3	720,0	810,5	938,5	2002,7	
480,00 min	559,6	699,1	791,7	922,6	2017,1	
600,00 min	503,7	648,1	744,3	880,1	2027,3	
900,00 min	333,6	487,2	590,0	735,3	1984,6	
1200,00 min	138,0	298,3	406,1	558,4	1885,7	
1440,00 min	0,0	135,0	246,1	403,0	1782,2	
Débit de fuite (m³/h)	49	49	49	49	49	
Volume maxi à stocker (m³)	628	752	834	955	2027	
Temps moyen de résidence (h)	11,9	14,2	15,8	18,0	38,3	
Temps de vidange (h)	23,7	28,4	31,5	36,1	76,6	

Volume bassin (m3)	628,3
Longueur extérieure (m)	77,6
Largeur extérieure (m)	10,0
Profondeur max (m)	1,00
Pente talus (°)	30,0

Longueur fond du bassin	74,1
Largeur fond du bassin	6,5

Calcul du volume à stocker (Méthode des pluies) Secteur n°5 – 1AUb « Route de Bonnoeuvre / rue des Platanes »

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	3292,5	0,1	0,11	0,12	0,15	0,85
Pavés		0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers		0,25	0,27	0,30	0,37	0,85
Voiries / parking		0,95	0,95	0,95	0,95	0,95
terrain de sport		0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	3292,5	0,95	0,95	0,95	0,95	0,95
Total	6585	0,53	0,53	0,53	0,55	0,90

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	0,66	0,66	0,66	0,66	0,66
Coefficient d'apport	0,53	0,53	0,53	0,55	0,90
Surface active (ha)	0,35	0,35	0,35	0,36	0,59
Débit permis (l/s)	1,98	1,98	1,98	1,98	1,98
Diamètre théorique buse de fuite (m)	0,034	0,034	0,034	0,034	0,034
Diamètre retenu (m)	0,034	0,050	0,050	0,050	0,050
Hauteur d'eau (m)	0,65	0,65	0,65	0,65	0,65
Débit maxi de la buse (l/s)	1,98	4,23	4,23	4,23	4,23
Débit maxi de la buse (m³/h)	7,1	15,2	15,2	15,2	15,2
Vitesse ascensionnelle (m/h)	0,04	0,04	0,04	0,04	0,04

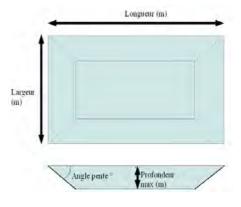
Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	168					
K (m/h)	0,010					
débit infiltré (m3/h)		1,7	1,7	1,7	1,7	1,7

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie			
	10 ans	20 ans	30 ans	50 ans	100 ans
Surface de la parcelle (ha)	0,6585	0,6585	0,6585	0,6585	0,6585
Coefficient de ruissellement	0,5250	0,5281	0,5348	0,5497	0,9000
Pente moyenne de la parcelle	0,057	0,057	0,057	0,057	0,057
Temps de concentration (Tc)	4.1	4.1	4.1	4.0	3,4

Intensité maximale (i) de la pluie de durée t (en mm/h) $i = a \times t^{(-b)}$


t	Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
4,1	99,6	115,3	124,2	135,6	150,3
10,00 min	65,3	75,7	81,6	89,0	99,0
20,00 min	58,7	54,7	58,9	64,3	71,6
30,00 min	39,0	45,2	48,7	53,2	59,3
40,00 min	34,1	39,5	42,6	46,5	51,9
50,00 min	30,7	35,6	38,4	41,9	46,7
60,00 min	25,6	29,7	32,0	34,8	38,7
70,00 min	22,8	26,4	28,4	30,9	34,3
80,00 min	20,6	23,8	25,6	27,8	30,9
90,00 min	18,9	21,7	23,4	25,4	28,2
100,00 min	17,4	20,1	21,6	23,4	25,9
120,00 min	15,2	17,4	18,7	20,3	22,5
140,00 min	13,5	15,5	16,7	18,0	19,9
160,00 min	12,2	14,0	15,0	16,3	18,0
180,00 min	11,2	12,8	13,7	14,8	16,4
200,00 min	10,3	11,8	12,7	13,7	15,1
220,00 min	9,6	11,0	11,8	12,7	14,0
240,00 min	9,0	10,3	11,0	11,9	13,1
300,00 min	7,6	8,7	9,3	10,0	11,0
360,00 min	6,6	7,5	8,0	8,7	9,5
420,00 min	5,9	6,7	7,1	7,7	8,4
480,00 min	5,3	6,0	6,4	6,9	7,6
600,00 min	4,5	5,1	5,4	5,8	6,4
900,00 min	3,3	3,7	4,0	4,3	4,7
1200,00 min	2,7	3,0	3,2	3,4	3,7
1440,00 min	2,3	2,6	2,8	3,0	3,2
a (6-60')	3,214	3,715	4,004	4,370	4,823
b (6-60')	0,470	0,469	0,469	0,469	0,466
A (30-1440')	9,357	11,329	12,468	13,912	15,842
B (30-1440')	0,754	0,765	0,770	0,776	0,782

t		Fréque	nce de retour de	la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
4,1	344,2	400,8	437,4	490,8	890,6
10,00 min	225,9	263,3	287,3	322,3	586,5
20,00 min	202,8	190,2	207,6	232,9	424,6
30,00 min	134,8	157,3	171,6	192,6	351,5
40,00 min	117,7	137,4	150,0	168,2	307,4
50,00 min	106,0	123,8	135,1	151,5	277,0
60,00 min	88,6	103,1	112,6	126,0	229,2
70,00 min	78,8	91,7	100,0	111,8	203,2
80,00 min	71,3	82,8	90,2	100,8	183,0
90,00 min	65,2	75,6	82,4	92,0	166,9
100,00 min	60,3	69,8	76,0	84,8	153,7
120,00 min	52,5	60,7	66,0	73,6	133,3
140,00 min	46,8	53,9	58,6	65,3	118,2
160,00 min	42,3	48,7	52,9	58,9	106,4
180,00 min	38,7	44,5	48,3	53,7	97,1
200,00 min	35,7	41,1	44,6	49,5	89,4
220,00 min	33,3	38,2	41,4	46,0	83,0
240,00 min	31,1	35,7	38,7	43,0	77,5
300,00 min	26,3	30,1	32,6	36,1	65,1
360,00 min	22,9	26,2	28,3	31,4	56,5
420,00 min	20,4	23,3	25,2	27,8	50,0
480,00 min	18,5	21,0	22,7	25,1	45,1
600,00 min	15,6	17,7	19,1	21,1	37,9
900,00 min	11,5	13,0	14,0	15,4	27,6
1200,00 min	9,3	10,4	11,2	12,3	22,0
1440,00 min	8,1	9,1	9,7	10,7	19,1

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
4,1	22,8	26,7	29,2	32,8	60,0
10,00 min	36,2	42,4	46,4	52,3	96,3
20,00 min	64,7	60,5	66,3	74,7	138,6
30,00 min	63,0	74,2	81,4	91,9	171,4
40,00 min	72,6	85,7	94,1	106,3	199,1
50,00 min	81,0	95,8	105,2	118,9	223,5
60,00 min	79,8	94,3	103,8	117,2	220,4
70,00 min	81,7	96,7	106,4	120,2	226,8
80,00 min	83,3	98,6	108,6	122,7	232,3
90,00 min	84,7	100,2	110,4	124,8	237,2
100,00 min	85,8	101,6	112,0	126,6	241,6
120,00 min	87,5	103,8	114,5	129,6	249,0
140,00 min	88,6	105,3	116,3	131,8	255,2
160,00 min	89,3	106,4	117,6	133,5	260,4
180,00 min	89,7	107,1	118,6	134,8	264,9
200,00 min	89,8	107,5	119,2	135,7	268,7
220,00 min	89,7	107,7	119,6	136,3	272,0
240,00 min	89,4	107,7	119,7	136,7	274,9
300,00 min	87,6	106,6	119,1	136,7	281,6
360,00 min	84,9	104,4	117,3	135,5	286,0
420,00 min	81,4	101,4	114,6	133,3	288,8
480,00 min	77,4	97,8	111,3	130,4	290,3
600,00 min	68,1	89,2	103,3	123,1	290,7
900,00 min	40,5	63,0	78,0	99,2	281,8
1200,00 min	9,2	32,7	48,4	70,7	264,6
1440,00 min	0,0	6,6	22,8	45,8	247,3
Débit de fuite (m³/h)	7	7	7	7	7
Volume maxi à stocker (m³)	90	108	120	137	291
Temps moyen de résidence (h)	7,9	9,5	10,6	12,1	25,6
Temps de vidange (h)	15,8	19,0	21,1	24,1	51,3

Volume bassin (m3)	90,7
Longueur extérieure (m)	16,8
Largeur extérieure (m)	10,0
Profondeur max (m)	0,65
Pente talus (°)	30,0

Longueur fond du bassin	14,5
Largeur fond du bassin	7,7

Calcul du volume à stocker (Méthode des pluies) Secteur n°6 – 1AUb « Rue des Glycines / Boulevard de la Gare »

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	1770	0,1	0,11	0,12	0,15	0,85
Pavés		0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers		0,25	0,27	0,30	0,37	0,85
Voiries / parking		0,95	0,95	0,95	0,95	0,95
terrain de sport		0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	1770	0,95	0,95	0,95	0,95	0,95
Total	3540	0,53	0,53	0,53	0,55	0,90

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	0,35	0,35	0,35	0,35	0,35
Coefficient d'apport	0,53	0,53	0,53	0,55	0,90
Surface active (ha)	0,19	0,19	0,19	0,19	0,32
Débit permis (l/s)	1,06	1,06	1,06	1,06	1,06
Diamètre théorique buse de fuite (m)	0,027	0,027	0,027	0,027	0,027
Diamètre retenu (m)	0,027	0,050	0,050	0,050	0,050
Hauteur d'eau (m)	0,5	0,5	0,5	0,5	0,5
Débit maxi de la buse (l/s)	1,06	3,71	3,71	3,71	3,71
Débit maxi de la buse (m³/h)	3,8	13,4	13,4	13,4	13,4
Vitesse ascensionnelle (m/h)	0,03	0,03	0,03	0,03	0,03

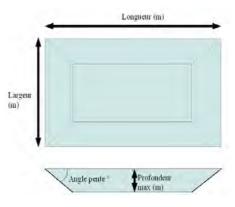
Calcul du débit infiltré

	[Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	121,5					
K (m/h)	0,010					
débit infiltré (m3/h)		1,2	1,2	1,2	1,2	1,2

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie			
	10 ans	20 ans	30 ans	50 ans	100 ans
Surface de la parcelle (ha)	0,3540	0,3540	0,3540	0,3540	0,3540
Coefficient de ruissellement	0,5250	0,5281	0,5348	0,5497	0,9000
Pente moyenne de la parcelle	0,022	0,022	0,022	0,022	0,022
Temps de concentration (Tc)	5,3	5,3	5,3	5,2	4.4

Intensité maximale (i) de la pluie de durée t (en mm/h) i = a x t^(-b)


t		Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans		
5,3	88,2	102,1	110,0	120,1	133,2		
10,00 min	65,3	75,7	81,6	89,0	99,0		
20,00 min	58,7	54,7	58,9	64,3	71,6		
30,00 min	39,0	45,2	48,7	53,2	59,3		
40,00 min	34,1	39,5	42,6	46,5	51,9		
50,00 min	30,7	35,6	38,4	41,9	46,7		
60,00 min	25,6	29,7	32,0	34,8	38,7		
70,00 min	22,8	26,4	28,4	30,9	34,3		
80,00 min	20,6	23,8	25,6	27,8	30,9		
90,00 min	18,9	21,7	23,4	25,4	28,2		
100,00 min	17,4	20,1	21,6	23,4	25,9		
120,00 min	15,2	17,4	18,7	20,3	22,5		
140,00 min	13,5	15,5	16,7	18,0	19,9		
160,00 min	12,2	14,0	15,0	16,3	18,0		
180,00 min	11,2	12,8	13,7	14,8	16,4		
200,00 min	10,3	11,8	12,7	13,7	15,1		
220,00 min	9,6	11,0	11,8	12,7	14,0		
240,00 min	9,0	10,3	11,0	11,9	13,1		
300,00 min	7,6	8,7	9,3	10,0	11,0		
360,00 min	6,6	7,5	8,0	8,7	9,5		
420,00 min	5,9	6,7	7,1	7,7	8,4		
480,00 min	5,3	6,0	6,4	6,9	7,6		
600,00 min	4,5	5,1	5,4	5,8	6,4		
900,00 min	3,3	3,7	4,0	4,3	4,7		
1200,00 min	2,7	3,0	3,2	3,4	3,7		
1440,00 min	2,3	2,6	2,8	3,0	3,2		
a (6-60')	3,214	3,715	4,004	4,370	4,823		
b (6-60')	0,470	0,469	0,469	0,469	0,466		
A (30-1440')	9,357	11,329	12,468	13,912	15,842		
B (30-1440')	0,754	0,765	0,770	0,776	0,782		

t	Fréquence de retour de la pluie				
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
5,3	163,9	190,9	208,3	233,7	424,4
10,00 min	121,4	141,5	154,5	173,3	315,3
20,00 min	109,0	102,3	111,6	125,2	228,3
30,00 min	72,5	84,5	92,3	103,5	189,0
40,00 min	63,3	73,9	80,6	90,4	165,3
50,00 min	57,0	66,5	72,6	81,5	148,9
60,00 min	47,6	55,4	60,5	67,7	123,2
70,00 min	42,4	49,3	53,8	60,1	109,2
80,00 min	38,3	44,5	48,5	54,2	98,4
90,00 min	35,1	40,7	44,3	49,5	89,7
100,00 min	32,4	37,5	40,8	45,6	82,6
120,00 min	28,2	32,6	35,5	39,6	71,7
140,00 min	25,1	29,0	31,5	35,1	63,5
160,00 min	22,7	26,2	28,4	31,6	57,2
180,00 min	20,8	23,9	26,0	28,9	52,2
200,00 min	19,2	22,1	24,0	26,6	48,1
220,00 min	17,9	20,5	22,3	24,7	44,6
240,00 min	16,7	19,2	20,8	23,1	41,7
300,00 min	14,1	16,2	17,5	19,4	35,0
360,00 min	12,3	14,1	15,2	16,9	30,4
420,00 min	11,0	12,5	13,5	15,0	26,9
480,00 min	9,9	11,3	12,2	13,5	24,2
600,00 min	8,4	9,5	10,3	11,3	20,4
900,00 min	6,2	7,0	7,5	8,3	14,8
1200,00 min	5,0	5,6	6,0	6,6	11,8
1440,00 min	4,3	4,9	5,2	5,8	10,3

t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
5,3	14,0	16,4	17,9	20,1	36,9
10,00 min	19,4	22,7	24,9	28,0	51,7
20,00 min	34,7	32,4	35,5	40,1	74,4
30,00 min	33,7	39,8	43,6	49,2	92,0
40,00 min	38,8	45,9	50,4	56,9	106,8
50,00 min	43,3	51,2	56,3	63,7	119,9
60,00 min	42,6	50,4	55,5	62,7	118,2
70,00 min	43,6	51,6	56,8	64,2	121,6
80,00 min	44,4	52,6	57,9	65,5	124,5
90,00 min	45,0	53,4	58,9	66,6	127,1
100,00 min	45,6	54,1	59,7	67,6	129,3
120,00 min	46,4	55,2	60,9	69,0	133,2
140,00 min	46,9	55,9	61,8	70,1	136,5
160,00 min	47,2	56,4	62,4	70,9	139,2
180,00 min	47,3	56,7	62,8	71,5	141,5
200,00 min	47,2	56,8	63,0	71,9	143,4
220,00 min	47,1	56,8	63,1	72,1	145,1
240,00 min	46,8	56,6	63,1	72,3	146,5
300,00 min	45,5	55,7	62,4	71,9	149,8
360,00 min	43,8	54,2	61,2	71,0	151,9
420,00 min	41,6	52,3	59,4	69,5	153,1
480,00 min	39,1	50,1	57,3	67,6	153,6
600,00 min	33,5	44,9	52,4	63,1	153,2
900,00 min	17,1	29,2	37,3	48,7	146,8
1200,00 min	0,0	11,3	19,8	31,7	136,0
1440,00 min	0,0	0,0	4,8	17,1	125,4
Débit de fuite (m³/h)	4	4	4	4	4
Volume maxi à stocker (m³)	47	57	63	72	154
Temps moyen de résidence (h)	5,9	7,1	7,8	9,0	19,1
Temps de vidange (h)	11,7	14,1	15,7	18,0	38,2

Volume bassin (m3)	47,6
Longueur extérieure (m)	27,0
Largeur extérieure (m)	4,5
Profondeur max (m)	0,50
Pente talus (°)	30,0

Longueur fond du bassin	25,3
Largeur fond du bassin	2,8
,	

Calcul du volume à stocker (Méthode des pluies) Secteur n°7 – 1AUe « Le Prateau »

Coefficient d'apport

	Surface (m²)		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans	
Espaces verts	9692	0,1	0,11	0,12	0,15	0,85	
Pavés		0,8	0,85	0,95	0,95	0,95	
Stabilisé/graviers		0,25	0,27	0,30	0,37	0,85	
Voiries / parking		0,95	0,95	0,95	0,95	0,95	
terrain de sport		0,2	0,21	0,24	0,30	0,85	
Toitures bâtiments	87223	0,95	0,95	0,95	0,95	0,95	
Total	96915	0,86	0,87	0,87	0,87	0,94	

Calcul de la section de fuite

		Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans	
Débit permis (l/ha/s)	3	3	3	3	3	
Surface projet (ha)	9,69	9,69	9,69	9,69	9,69	
Coefficient d'apport	0,86	0,87	0,87	0,87	0,94	
Surface active (ha)	8,38	8,39	8,4	8,43	9,11	
Débit permis (l/s)	29,07	29,07	29,07	29,07	29,07	
Diamètre théorique buse de fuite (m)	0,106	0,106	0,106	0,106	0,106	
Diamètre retenu (m)	0,106	0,106	0,106	0,106	0,106	
Hauteur d'eau (m)	1,5	1,5	1,5	1,5	1,5	
Débit maxi de la buse (l/s)	29,07	29,07	29,07	29,07	29,07	
Débit maxi de la buse (m³/h)	104,7	104,7	104,7	104,7	104,7	
Vitesse ascensionnelle (m/h)	0,05	0,05	0,05	0,05	0,05	

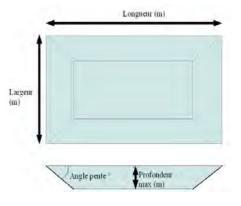
Calcul du débit infiltré

		Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	2061,9					
K (m/h)	0,010					
débit infiltré (m3/h)		20,6	20,6	20,6	20,6	20,6

Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans	
Surface de la parcelle (ha)	9,6915	9,6915	9,6915	9,6915	9,6915	
Coefficient de ruissellement	0,8650	0,8656	0,8669	0,8699	0,9400	
Pente moyenne de la parcelle	0,059	0,059	0,059	0,059	0,059	
Temps de concentration (Tc)	8,6	8,6	8,6	8,6	8,4	

Intensité maximale (i) de la pluie de durée t (en mm/h) $i = a \times t^{(-b)}$


t	Fréquence de retour de la pluie						
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans		
8,6	70,0	81,1	87,4	95,4	106,0		
10,00 min	65,3	75,7	81,6	89,0	99,0		
20,00 min	58,7	54,7	58,9	64,3	71,6		
30,00 min	39,0	45,2	48,7	53,2	59,3		
40,00 min	34,1	39,5	42,6	46,5	51,9		
50,00 min	30,7	35,6	38,4	41,9	46,7		
60,00 min	25,6	29,7	32,0	34,8	38,7		
70,00 min	22,8	26,4	28,4	30,9	34,3		
80,00 min	20,6	23,8	25,6	27,8	30,9		
90,00 min	18,9	21,7	23,4	25,4	28,2		
100,00 min	17,4	20,1	21,6	23,4	25,9		
120,00 min	15,2	17,4	18,7	20,3	22,5		
140,00 min	13,5	15,5	16,7	18,0	19,9		
160,00 min	12,2	14,0	15,0	16,3	18,0		
180,00 min	11,2	12,8	13,7	14,8	16,4		
200,00 min	10,3	11,8	12,7	13,7	15,1		
220,00 min	9,6	11,0	11,8	12,7	14,0		
240,00 min	9,0	10,3	11,0	11,9	13,1		
300,00 min	7,6	8,7	9,3	10,0	11,0		
360,00 min	6,6	7,5	8,0	8,7	9,5		
420,00 min	5,9	6,7	7,1	7,7	8,4		
480,00 min	5,3	6,0	6,4	6,9	7,6		
600,00 min	4,5	5,1	5,4	5,8	6,4		
900,00 min	3,3	3,7	4,0	4,3	4,7		
1200,00 min	2,7	3,0	3,2	3,4	3,7		
1440,00 min	2,3	2,6	2,8	3,0	3,2		
a (6-60')	3,214	3,715	4,004	4,370	4,823		
b (6-60')	0,470	0,469	0,469	0,469	0,466		
A (30-1440')	9,357	11,329	12,468	13,912	15,842		
B (30-1440')	0,754	0,765	0,770	0,776	0,782		

t		Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans		
8,6	5870,0	6804,5	7345,1	8044,2	9655,3		
10,00 min	5477,7	6350,8	6855,4	7507,8	9015,4		
20,00 min	4917,2	4588,2	4952,8	5424,1	6526,9		
30,00 min	3268,5	3793,7	4095,1	4484,8	5403,2		
40,00 min	2855,2	3314,8	3578,2	3918,7	4725,3		
50,00 min	2570,9	2985,5	3222,6	3529,3	4258,6		
60,00 min	2147,7	2487,6	2686,3	2934,8	3523,4		
70,00 min	1912,0	2210,9	2385,7	2603,9	3123,3		
80,00 min	1728,9	1996,2	2152,5	2347,6	2813,6		
90,00 min	1582,0	1824,2	1965,9	2142,5	2566,0		
100,00 min	1461,1	1682,9	1812,7	1974,3	2363,1		
120,00 min	1273,5	1463,8	1575,3	1713,9	2049,1		
140,00 min	1133,7	1301,0	1399,0	1520,6	1816,4		
160,00 min	1025,1	1174,7	1262,3	1371,0	1636,3		
180,00 min	938,0	1073,4	1152,8	1251,2	1492,3		
200,00 min	866,4	990,3	1063,0	1153,0	1374,3		
220,00 min	806,3	920,7	987,8	1070,8	1275,6		
240,00 min	755,1	861,4	923,8	1000,9	1191,7		
300,00 min	638,2	726,2	777,9	841,7	1000,9		
360,00 min	556,2	631,7	676,1	730,7	867,9		
420,00 min	495,2	561,4	600,4	648,3	769,3		
480,00 min	447,8	506,9	541,7	584,5	693,0		
600,00 min	378,4	427,3	456,2	491,6	582,1		
900,00 min	278,7	313,4	333,9	358,9	423,9		
1200,00 min	224,4	251,5	267,5	287,1	338,5		
1440,00 min	195,6	218,7	232,5	249,2	293,5		

t	Fréquence de retour de la pluie					
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans	
8,6	826,4	960,9	1038,7	1139,2	1371,0	
10,00 min	892,1	1037,6	1121,7	1230,4	1481,7	
20,00 min	1597,3	1487,6	1609,2	1766,3	2133,9	
30,00 min	1571,6	1834,2	1984,9	2179,7	2638,9	
40,00 min	1819,9	2126,4	2301,9	2529,0	3066,7	
50,00 min	2038,0	2383,5	2581,1	2836,7	3444,4	
60,00 min	2022,4	2362,3	2561,0	2809,5	3398,1	
70,00 min	2084,5	2433,2	2637,1	2891,7	3497,7	
80,00 min	2138,1	2494,5	2703,0	2963,1	3584,4	
90,00 min	2185,0	2548,3	2760,9	3025,9	3661,1	
100,00 min	2226,4	2596,0	2812,4	3081,7	3729,7	
120,00 min	2296,4	2677,1	2900,0	3177,1	3847,6	
140,00 min	2353,0	2743,3	2972,0	3255,8	3945,9	
160,00 min	2399,6	2798,3	3032,0	3321,8	4029,3	
180,00 min	2438,2	2844,5	3082,7	3377,8	4101,0	
200,00 min	2470,4	2883,4	3125,8	3425,6	4163,3	
220,00 min	2497,1	2916,4	3162,5	3466,8	4217,7	
240,00 min	2519,3	2944,4	3194,0	3502,3	4265,5	
300,00 min	2564,5	3004,6	3263,3	3582,2	4377,8	
360,00 min	2585,6	3038,3	3304,6	3632,4	4455,5	
420,00 min	2589,2	3052,8	3325,7	3661,1	4508,1	
480,00 min	2579,7	3052,8	3331,5	3673,6	4541,9	
600,00 min	2531,3	3020,5	3309,1	3662,7	4567,7	
900,00 min	2301,7	2821,3	3128,6	3503,6	4479,2	
1200,00 min	1981,9	2523,7	2844,7	3235,5	4264,3	
1440,00 min	1686,6	2242,7	2572,7	2973,7	4037,6	
Débit de fuite (m³/h)	105	105	105	105	105	
Volume maxi à stocker (m³)	2589	3053	3331	3674	4568	
Temps moyen de résidence (h)	23,8	28,0	30,6	33,7	41,9	
Temps de vidange (h)	47,6	56,1	61,2	67,5	83,9	

Volume bassin (m3)	2589,8
Longueur extérieure (m)	114,6
Largeur extérieure (m)	18,0
Profondeur max (m)	1,50
Pente talus (°)	30,0

2061.9	Longueur fond du bassin	109.4
,	Largeur fond du bassin	12,8

Calcul du volume à stocker (Méthode des pluies) Secteur n°8 – 1AUe « Les Basses Riantières »

Coefficient d'apport

	Surface (m²)	Fréquence de retour de la pluie				
		10 ans	20 ans	30 ans	50 ans	100 ans
Espaces verts	34674	0,1	0,11	0,12	0,15	0,85
Pavés		0,8	0,85	0,95	0,95	0,95
Stabilisé/graviers		0,25	0,27	0,30	0,37	0,85
Voiries / parking		0,95	0,95	0,95	0,95	0,95
terrain de sport		0,2	0,21	0,24	0,30	0,85
Toitures bâtiments	138696	0,95	0,95	0,95	0,95	0,95
Total	173370	0,78	0,78	0,78	0,79	0,93

Calcul de la section de fuite

	Fréquence de retour de la pluie				
	10 ans	20 ans	30 ans	50 ans	100 ans
Débit permis (l/ha/s)	3	3	3	3	3
Surface projet (ha)	17,34	17,34	17,34	17,34	17,34
Coefficient d'apport	0,78	0,78	0,78	0,79	0,93
Surface active (ha)	13,52	13,54	13,59	13,69	16,12
Débit permis (l/s)	52,01	52,01	52,01	52,01	52,01
Diamètre théorique buse de fuite (m)	0,142	0,142	0,142	0,142	0,142
Diamètre retenu (m)	0,142	0,142	0,142	0,142	0,142
Hauteur d'eau (m)	1,5	1,5	1,5	1,5	1,5
Débit maxi de la buse (l/s)	52,01	52,01	52,01	52,01	52,01
Débit maxi de la buse (m³/h)	187,2	187,2	187,2	187,2	187,2
Vitesse ascensionnelle (m/h)	0,06	0,06	0,06	0,06	0,06

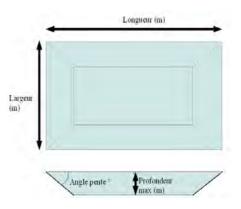
Calcul du débit infiltré

			Fréquei	nce de retour de	la pluie	
		10 ans	20 ans	30 ans	50 ans	100 ans
Surface d'infiltration (m²)	3066					
K (m/h)	0,010					
débit infiltré (m3/h)		30,7	30,7	30,7	30,7	30,7

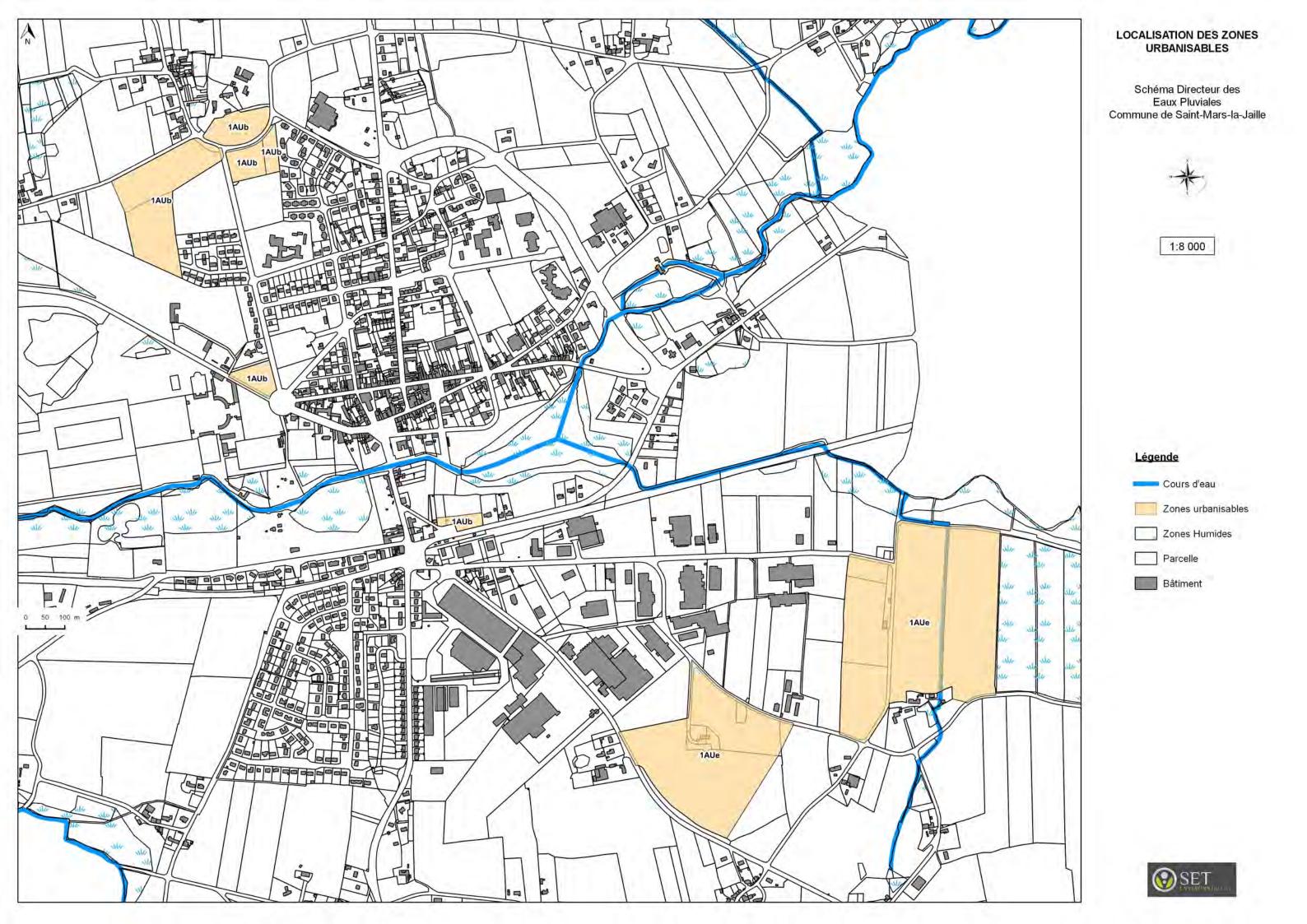
Temps de concentration Tc = 0,9 A^{0,35} Ce^{-0,35} P^{-0,5}

		Fréquence de retour de la pluie									
	10 ans	20 ans	30 ans	50 ans	100 ans						
Surface de la parcelle (ha)	17,3370	17,3370	17,3370	17,3370	17,3370						
Coefficient de ruissellement	0,7800	0,7813	0,7839	0,7899	0,9300						
Pente moyenne de la parcelle	0,020	0,020	0,020	0,020	0,020						
Temps de concentration (Tc)	18.8	18.8	18.8	18.8	17.7						

Intensité maximale (i) de la pluie de durée t (en mm/h) i = a x t^(-b)


t	Fréquence de retour de la pluie									
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans					
18,8	48,5	56,2	60,6	66,2	73,7					
20,00 min	47,2	54,7	58,9	64,3	71,6					
30,00 min	43,2	45,2	48,7	53,2	59,3					
40,00 min	34,1	39,5	42,6	46,5	51,9					
50,00 min	30,7	35,6	38,4	41,9	46,7					
50,00 min	28,1	32,7	35,2	38,4	42,9					
70,00 min	22,8	26,4	28,4	30,9	34,3					
80,00 min	20,6	23,8	25,6	27,8	30,9					
90,00 min	18,9	21,7	23,4	25,4	28,2					
100,00 min	17,4	20,1	21,6	23,4	25,9					
110,00 min	16,2	18,6	20,0	21,7	24,1					
120,00 min	15,2	17,4	18,7	20,3	22,5					
140,00 min	13,5	15,5	16,7	18,0	19,9					
160,00 min	12,2	14,0	15,0	16,3	18,0					
180,00 min	11,2	12,8	13,7	14,8	16,4					
200,00 min	10,3	11,8	12,7	13,7	15,1					
220,00 min	9,6	11,0	11,8	12,7	14,0					
240,00 min	9,0	10,3	11,0	11,9	13,1					
300,00 min	7,6	8,7	9,3	10,0	11,0					
360,00 min	6,6	7,5	8,0	8,7	9,5					
120,00 min	5,9	6,7	7,1	7,7	8,4					
480,00 min	5,3	6,0	6,4	6,9	7,6					
500,00 min	4,5	5,1	5,4	5,8	6,4					
900,00 min	3,3	3,7	4,0	4,3	4,7					
1200,00 min	2,7	3,0	3,2	3,4	3,7					
440,00 min	2,3	2,6	2,8	3,0	3,2					
a (6-60')	3,214	3,715	4,004	4,370	4,823					
0 (6-60')	0,470	0,469	0,469	0,469	0,466					
A (30-1440')	9,357	11,329	12,468	13,912	15,842					
B (30-1440')	0,754	0,765	0,770	0,776	0,782					

t		Fréque	nce de retour de	la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
18,8	6560,7	7617,9	8238,4	9060,1	11877,2
20,00 min	6379,4	7407,8	8011,3	8810,2	11551,7
30,00 min	5842,6	6125,0	6623,9	7284,5	9562,8
40,00 min	4605,7	5351,9	5787,8	6365,1	8363,1
50,00 min	4147,2	4820,1	5212,7	5732,6	7537,1
60,00 min	3806,6	4425,1	4785,5	5262,8	6923,2
70,00 min	3084,3	3569,5	3858,9	4229,4	5527,8
80,00 min	2788,9	3222,9	3481,8	3813,1	4979,7
90,00 min	2551,9	2945,2	3179,9	3480,0	4541,5
100,00 min	2357,0	2717,1	2932,1	3206,8	4182,3
110,00 min	2193,5	2526,0	2724,7	2978,2	3881,9
120,00 min	2054,3	2363,4	2548,1	2783,8	3626,6
140,00 min	1828,8	2100,5	2262,9	2469,9	3214,7
160,00 min	1653,7	1896,5	2041,8	2226,8	2896,0
180,00 min	1513,1	1733,1	1864,8	2032,3	2641,2
200,00 min	1397,6	1598,9	1719,5	1872,7	2432,3
220,00 min	1300,7	1486,5	1597,8	1739,2	2257,6
240,00 min	1218,1	1390,7	1494,3	1625,7	2109,1
300,00 min	1029,5	1172,5	1258,4	1367,2	1771,4
360,00 min	897,2	1019,8	1093,5	1186,8	1536,0
420,00 min	798,8	906,4	971,1	1053,0	1361,6
480,00 min	722,3	818,4	876,3	949,4	1226,6
600,00 min	610,4	690,0	737,9	798,4	1030,2
900,00 min	449,6	506,0	540,0	582,9	750,2
1200,00 min	362,0	406,0	432,7	466,3	599,1
1440,00 min	315,5	353,2	376,1	404,8	519,5


t		Fréque	nce de retour de	e la pluie	
durée de la pluie	10 ans	20 ans	30 ans	50 ans	100 ans
18,8	1991,9	2323,9	2518,8	2776,8	3661,5
20,00 min	2053,8	2396,6	2597,8	2864,1	3777,9
30,00 min	2812,4	2953,5	3203,0	3533,3	4672,5
40,00 min	2925,2	3422,7	3713,3	4098,1	5430,1
50,00 min	3274,4	3835,2	4162,4	4595,6	6099,3
60,00 min	3588,7	4207,2	4567,6	5044,9	6705,3
70,00 min	3344,1	3910,2	4247,8	4680,1	6194,9
80,00 min	3427,9	4006,6	4351,9	4793,6	6349,0
90,00 min	3500,9	4090,9	4443,1	4893,2	6485,4
100,00 min	3565,1	4165,3	4523,7	4981,6	6607,4
110,00 min	3622,0	4231,6	4595,7	5060,6	6717,4
120,00 min	3672,7	4291,0	4660,4	5131,7	6817,4
140,00 min	3758,9	4392,7	4771,7	5254,7	6992,6
160,00 min	3828,7	4476,3	4863,7	5357,1	7141,6
180,00 min	3885,7	4545,6	4940,6	5443,2	7269,8
200,00 min	3932,3	4603,3	5005,2	5516,1	7381,3
220,00 min	3970,2	4651,4	5059,6	5578,2	7478,8
240,00 min	4000,7	4691,4	5105,4	5631,1	7564,7
300,00 min	4057,8	4773,0	5202,3	5746,5	7767,4
360,00 min	4076,0	4811,7	5253,8	5813,6	7908,6
420,00 min	4066,2	4819,5	5272,7	5845,8	8005,6
480,00 min	4035,0	4803,9	5266,8	5851,7	8069,3
600,00 min	3925,2	4720,6	5200,2	5805,2	8122,6
900,00 min	3476,0	4320,8	4832,0	5474,8	7985,1
1200,00 min	2881,1	3762,1	4296,6	4967,3	7624,0
1440,00 min	2341,6	3246,0	3795,6	4484,4	7238,2
Débit de fuite (m³/h)	187	187	187	187	187
Volume maxi à stocker (m³)	4076	4820	5273	5852	8123
Temps moyen de résidence (h)	21,3	25,2	27,5	30,6	42,4
Temps de vidange (h)	42,6	50,3	55,1	61,1	84,8

Volume bassin (m3)	4076,6
Longueur extérieure (m)	109,5
Largeur extérieure (m)	28,0
Profondeur max (m)	1,50
Pente talus (°)	30,0

Longueur fond du bassin	104,3
Largeur fond du bassin	22,8

ANNEXE 3 : Plan des zones urbanisables

ANNEXE 4 : Résultats de la simulation de phase I

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
A 367	A 366	16,7	B300	98,4	33,8	1,26	Muskingum	2	2	60	30	54	0	0
AA 492	AA 494	29,6	B300	171,4	106.9	2,56	Muskingum	2	0	68	30	179	0	0
AA 494	AA 496	22,4	B300	167,3	106.2	2,51	Muskingum	2	0	68	32	179	0	0
AA 496	AA 497	32,7	B300	116,7	105,8	1,87	Muskingum	2	0	70	32	179	0	0
AA 497	AA 498	5,1	B300	251,9	105,8	3,41	T. Simple	2	0	70	32	179	0	0
AA 498	AA 505	48	B300	143	104	2,21	Muskingum	2	0	74	32	178	0	0
AA 505	AA 506	51,6	B300	151,4	112,4	2,35	Muskingum	2	0	76	34	194	0	0
AB 489	AB 491	36,9	B300	151,7	59,8	2,02	Muskingum	2	2	66	30	99	0	0
AB 491	AB 493	18,1	B300	149,5	127	2,37	Muskingum	2	0	68	30	210	0	0
AB 493	AB 495	33,5	B300	151,5	126	2,4	Muskingum	2	0	68	32	210	0	0
AB 495	AB 499	51.9	B300	150.4	124.8	2,38	Muskingum	2	0	74	32	210	0	0
AB 499	AB 500	22,5	B300	172,2	123,3	2,65	Muskingum	2	0	74	32	210	0	0
AB 500	AB 504	23,3	B300	142,8	123,1	2,27	Muskingum	2	0	76	34	209	0	0
AB 504	AB 507	64,4	POL300	147,7	143	2,09	T. Simple	2	0	76,5	26,5	337	27,4	0
AB 507	AB 508	8	POL300	182,6	143	2,86	T. Simple	2	0,5	76,5	26,5	337	0	0
AC 584	AC 585	9	B300	33,5	32,5	0,47	T. Simple	2	0	122,3	10,3	225	122,4	0
AD 418	AD 424	27,1	B600	893	544	3,31	T. Simple	2	0,2	678,4	32,4	2471	0	0
AD 420	AD 424	64,8	B500	253.5	176,1	1,39	Muskingum	2	0	140	32	789	0	0
AD 421	AD 420	13,4	B400	442,8	158,2	3,23	T. Simple	2	0	134,1	30,1	760	0	0
AD 423	AD 421	17	B400	367,7	158,2	2,82	Muskingum	2	0	134	30	760	0	0
AD 424	AD 426	29,7	B600	549.6	532,1	1,94	T. Simple	2	0	678,2	18,2	5779	917	0
AD 424	AD 904	20,7	B800	3082,6	731,2	5,02	T. Simple	2	0	678,1	28,1	6562	0	0
AD 427	AD 429	70,8	B300	144,4	26,3	1,55	Muskingum	2	2	70	32	44	0	0
AD 428	AD 429 AD 427	11,5	POL300	280,8	26.3	2,49	Muskingum	2	2	62	30	44	0	0
AD 428 AD 429	AD 427 AD 433	53	B300	135,4	131	1,91	T. Simple	2	0	116,4	22,4	550	179,7	0
AD 429 AD 430	AD 433 AD 432	47.8	B300	155,4	42.4	1,91	Muskingum	2	2	66	32	71	0	0
AD 430 AD 431	AD 432 AD 429	57,3	POL300	263,9	255,5	3,73	T. Simple	2	0	114,3	32,3	482	6,1	0
AD 431	AD 429 AD 434	64	B300	139,4	41,8	1,72	Muskingum	2	2	72	32,3	71	0,1	0
AD 432 AD 433	AD 434 AD 435	50,4	B300	130,6	126,4	1,85	T. Simple	2	0	116,4	20,4	596	54,6	0
AD 433	AD 435 AD 436	39,3	B300	140,8	74,2	2,02	Muskingum	2	2	72	32	128	0	0
AD 434 AD 435	AD 430 AD 440	97,3	B300	53,9	52,2	0,76	T. Simple	2	0,4	202,3	18,3	596	329,1	0
AD 435	AD 438	16,6	B300	135,2	73,5	1,95	Muskingum	2	2	72	32	128	0	0
AD 438	AD 438 AD 439	38,8	B400	205,7	199,2	1,64	T. Simple	2	0	78,4	18,4	776	230,2	0
AD 438	AD 439 AD 426	67,9	B400	280,6	199,2	2,42	Muskingum	2	0,4	100,4	34,4	783	0	0
AD 440	AD 441	17,6	B300	126,8	52,2	1,71	Muskingum	2	2,3	206,3	24,3	597	0	0
AD 441	AD 441 AD 442	33	B300	102,1	52,2	1,45	Muskingum	2	2,3	200,3	28,3	597	0	0
AD 441 AD 442	AD 442 AD 904	14,1	B300	266,5	52,2	2,92	T. Simple	2	2,3	208,3	28,4	597	0	0
AD 442 AD 444	AD 904 AD 446	73	F444	1303,2	97,8	2,92	•	2	0	96	32	160	0	0
AD 444 AD 446	AD 440 AD 449	8	F444 F446	9322,9	96.6	2,22	Muskingum Muskingum	2	0	108	34	160	0	0
AD 448	AD 449 AD 449	48	B500	793,5	139,1	3,04		2	0	88	34	236	0	0
AD 449	AD 449 AD 431	27,7	F449	3947,9	278,2	4,38	Muskingum	2	0	114	34	482	0	0
		,	B500		,	4,38	Muskingum	2	0	76	32	236	0	0
AD 450 AD 451	AD 453 AD 450	18,4 69,9	B400	1301,1 303,2	141,5 79,3	2,03	Muskingum	2	0	76	32	130	0	0
AD 451 AD 452		36,3	B400 B400	152,5	79,3	1,23	Muskingum	2	0	64	32	130	0	0
	AD 451	,					Muskingum	2	0	-			0	0
AD 453	AD 448	57,3	B500	1340,8	140,2	4,42	Muskingum			84	34	236		-
AD 456	AD 460	35,4	B300	321,2	200,2	4,79	Muskingum	2	0	70	30	330	0	0
AD 459	AD 463	25,1	B400	738,7	198,2	4,98	Muskingum	2	0	72	32	330	0	0
AD 460	AD 459	8,6	B400	590,8	200,2	4,25	T. Simple	2	0	70	30	330	0	0
AD 461	AD 463	12,2	B200	122,4	36,8	3,41	Muskingum	2	2	62	30	59	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
AD 462	AD 463	6,7	B200	118,6	49,4	3,6	T. Simple	2	2	62	30	79	0	0
AD 463	AD 465	32,7	B400	547,6	364,7	4,66	Muskingum	2	0	74	32	609	0	0
AD 465	AD 438	34,6	B400	520,7	363.5	4,48	Muskingum	2	0	78	32	608	0	0
AD 466	AD 468	27	POLY400	287,2	278	2,29	T. Simple	2	0	74,2	22,2	801	90	0
AD 467	AD 466	23,9	B300	145.5	63,7	1,99	Muskingum	2	0	62	30	101	0	0
AD 468	AD 469	68,1	POLY500	299,3	278	1,73	Muskingum	2	0,2	82,2	52,2	801	0	0
AD 469	AD 470	17,3	POLY500	177	171,4	0,9	T. Simple	2	0,2	90,5	16,5	801	255,7	0
AD 470	AD 471	12,4	POLY500	418,2	171,4	2,02	Muskingum	2	0,5	94,5	22,5	801	0	0
AD 471	AD 475	26,7	POLY600	463,4	309,7	1,76	Muskingum	2	0	96	40	1259	0	0
AD 472	AD 471	44,9	POLY400	160,3	138,3	1,44	Muskingum	2	0,6	74,6	40,6	459	0	0
AD 473	AD 472	48,5	POLY400	142,8	138,3	1,14	T. Simple	2	0	74,6	20,6	459	94,4	0
AD 474	AD 473	57	POLY400	168	162,6	1,34	T. Simple	2	0	72,7	26,7	374	28,1	0
AD 475	AD 476	15,4	B600	460,3	374	1,81	Muskingum	2	0	100	30	1362	0	0
AD 476	AD 698	60,5	POLY600	1197,3	372,8	3,74	Muskingum	2	0	120	32	1364	0	0
AD 480	AD 474	45,3	B300	165	98,2	2,44	Muskingum	2	2,5	70,5	32,5	168	0	0
AD 481	AD 480	44,2	B300	101,5	98,2	1,44	T. Simple	2	2	66,5	30,5	167	0,2	0
AD 482	AD 481	45	B300	109,1	47	1,49	Muskingum	2	2	66	32	79	0	0
AD 520	AD 521	11,2	B400	653,6	44,3	2,96	Muskingum	2	2	80	34	89	0	0
AD 521	AD 522	4,2	B400	334,2	44,3	1,84	T. Simple	2	2	80	34	89	0	0
AD 522	AD 523	38,3	B400	505,9	44,2	2,47	Muskingum	2	2	84	34	89	0	0
AD 523	AD 524	21	B300	267	43,9	2,79	Muskingum	2	2	84	36	89	0	0
AD 524	AD 731	26,4	B300	179,4	75,1	2,42	Muskingum	2	2	84	34	151	0	0
AD 525	AD 526	3,3	B300	175,1	99	2,55	T. Simple	2	0,3	288,3	26,3	1496	0	0
AD 526	AD 527	2,5	B400	193,7	173,6	1,74	T. Simple	2	0	290	36	1647	0	0
AD 527	AD 528	17,4	B400	187,2	181,2	1,49	T. Simple	2	0	290,2	26,2	1750	37,1	0
AD 528	AD 529	27,4	B400	180,4	174,6	1,44	T. Simple	2	0,2	290,5	26,5	1750	15,1	0
AD 529	AD 530	18,1	B400	221,9	174,6	1,96	T. Simple	2	0,5	290,7	26,7	1750	0	0
AD 530	AD 531	16,5	B400	130,6	126,4	1,04	T. Simple	2	0	290,2	20,2	1840	201,8	0
AD 531	AD 534	19,5	B400	183,5	126,4	1,57	T. Simple	2	0,2	290,4	20,4	1840	0	0
AD 532	AD 533	34	B400	189,4	58,8	1,33	Muskingum	2	0	66	30	95	0	0
AD 533	AD 537	34,7	B400	198	57,8	1,37	Muskingum	2	0	68	32	95	0	0
AD 534	AD 535	17,7	B400	192,6	126,4	1,64	T. Simple	2	0,4	290,6	20,6	1840	0	0
AD 535	AD 536	15,2	B400	157,1	126,4	1,39	T. Simple	2	0,6	290,8	20,8	1840	0	0
AD 536	AD 539	27,8	B400	205,4	126,4	1,72	Muskingum	2	0,8	290,8	86,8	1839	0	0
AD 537	AD 538	37,5	B400	190,5	57,5	1,33	Muskingum	2	0	70	32	94	0	0
AD 538	AD 541	9,8	B400	218,8	57,2	1,46	Muskingum	2	0	70	32	94	0	0
AD 539	AD 540	16,9	B400	204,1	126,4	1,71	T. Simple	2	0,8	291	87	1839	0	0
AD 540	AD 542	135	B400	402,4	126,4	2,83	Muskingum	2	1	299	91	1802	0	0
AD 541	AD 633	20,5	B300	286,2	56,4	3,14	Muskingum	2	0	70	32	94	0	0
AD 542	AD 545	152,1	B400	490,5	363,5	4,27	Muskingum	2	0	320	34	2457	0	0
AD 545	AD 424	30,6	B400	560,6	363,5	4,75	T. Simple	2	0	320,1	34,1	2457	0	0
AD 546	AD 547	27,3	BT546	0	133,3	0	T. Simple	2	0	168	46	406	168,3	0
AD 547	AD 542	7	B300	752,6	133,3	8,03	T. Simple	2	0	168	46	406	0	0
AD 548	AD 549	61	POL300	71,4	38,6	1,03	Muskingum	2	2	68	32	66	0	0
AD 549	AD 550	42,8	B300	65,2	63,1	0,92	T. Simple	2	2	68,7	26,7	143	10,3	0
AD 550	AD 551	22,7	B300	63,3	61,3	0,9	T. Simple	2	2,7	69,1	27,1	143	2,4	0
AD 551	AD 552	22,5	B300	36,7	35,6	0,52	T. Simple	2	3,1	79,8	17,8	143	43,6	0
AD 552	AD 553	16,1	B300	70,9	35,6	1	Muskingum	2	3,8	81,8	23,8	143	0	0
AD 553	AD 554	40,9	B300	27,2	26,4	0,39	T. Simple	2	3,8	103,3	17,3	143	33,4	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
AD 554	AD 555	35,9	B300	53,1	51,4	0,75	T. Simple	2	2	104,7	24,7	215	10,7	0
AD 555	AD 556	38,8	B300	68,5	66,3	0,97	T. Simple	2	2	106,6	22,6	267	12,2	0
AD 556	AD 557	42.4	B300	75.7	66.3	1,21	Muskingum	2	2,6	108.6	34,6	267	0	0
AD 557	AD 558	21,3	B300	121,3	89,8	1,88	Muskingum	2	2	110	32	307	0	0
AD 558	AD 559	28	B300	110,8	89,8	1,75	Muskingum	2	2	112	32	307	0	0
AD 559	AD 560	22,1	B300	47,8	46,3	0,68	T. Simple	2	2	148,5	14,5	384	160,2	0
AD 560	AD 562	53,9	B300	36,2	35,1	0,51	T. Simple	2	2,5	194	14	384	89,8	0
AD 562	AD 563	49,7	B300	42,8	35,1	0,68	Muskingum	2	4	200	30	385	0	0
AD 563	AD 564	14,1	B300	26,8	25,9	0,38	T. Simple	2	4	258,6	14,6	385	97,6	0
AD 564	AD 565	33,4	F564	1892,7	62,1	0,97	Muskingum	2	2	274	30	444	0	0
AD 565	AD 906	5,5	POL300	463.6	62.1	4.56	T. Simple	2	2	274	30	444	0	0
AD 631	AD 420	39.8	B300	178,2	18,5	1,63	Muskingum	2	2	62	30	29	0	0
AD 633	AD 634	20,9	B300	160,2	56,1	2,06	Muskingum	2	0	72	34	94	0	0
AD 634	AD 635	41,4	B300	175,4	55,8	2,2	Muskingum	2	0	76	34	94	0	0
AD 635	AD 636	54,4	B300	162,5	55,1	2,08	Muskingum	2	0	80	36	94	0	0
AD 636	AD 637	19,3	B300	163,5	55	2,08	Muskingum	2	0	80	36	94	0	0
AD 637	AD 638	38,1	B400	389,2	54,1	2,18	Muskingum	2	0	82	36	93	0	0
AD 638	AD 639	39,2	B400	413,7	345.4	3,68	Muskingum	2	0	86	32	620	0	0
AD 639	AD 641	38,9	B600	1044,1	520,6	3,69	T. Simple	2	0	674,2	32,2	1281	0	0
AD 640	AD 639	6,9	B600	1140,2	161,2	2,85	T. Simple	2	0	70	30	278	0	0
AD 641	AD 642	29	B600	721,3	636,5	2,88	T. Simple	2	0	674,2	32,2	1481	0	0
AD 642	AD 643	51,5	B500	164,2	158,9	0,84	T. Simple	2	0,2	675,2	13,2	1481	624,9	0
AD 643	AD 644	47,4	B500	255,1	247	1,3	T. Simple	2	0,2	676,6	14,6	1957	211,2	0
AD 643	AD 645	22,6	B500	297,8	247	1,7	T. Simple	2	0.6	676.8	14,8	1957	0	0
AD 645	AD 646	27,7	B500	441,4	247	2,31	T. Simple	2	0,8	677	15	1957	0	0
AD 645 AD 646	AD 646 AD 647	35,9	B500	439.7	325.5	2,45	T. Simple	2	0,8	676.3	32,3	2089	0	0
AD 647	AD 653	103	B500	522	494,9	3,02	Muskingum	2	0	678	34	2382	0	0
AD 649	AD 651	47,5	B300	217,9	79,6	2,84	Muskingum	2	0	68	32	133	0	0
AD 651	AD 651	35,7	B300	249,7	79,0	3,14	Muskingum	2	0	72	32	132	0	0
AD 651	AD 646	21,2	B400	407,4	79,4	2,5	Muskingum	2	0	72	32	132	0	0
AD 653	AD 418	37,5	B500	739,6	544	4,12	T. Simple	2	0	678,2	32,2	2471	0	0
AD 654	AD 416 AD 655	42,9	B300	161	71,4	2,21	Muskingum	2	2	94	34	155	0	0
AD 655	AD 656	21,4	B300	225,9	71,4	2,83	Muskingum	2	2	94	36	155	0	0
AD 656	AD 658	63,2	B300	186,4	71	2,46	Muskingum	2	2	98	36	155	0	0
AD 658	AD 659	69,3	POLY400	381,8	70.9	2,32	Muskingum	2	2	104	38	155	0	0
AD 659	AD 662	51,3	POLY400	379,3	93.8	2,5	Muskingum	2	2	104	38	205	0	0
AD 662	AD 664	41,7	POLY400 POLY400	295	93,8	2,08	Muskingum	2	2	108	38	203	0	0
AD 664	AD 668	75,2	POLY400	321,1	93,2	2,08		2	2	116	40	204	0	0
AD 668	AD 670	34	POLY400	190,7	93,1	1,51	Muskingum Muskingum	2	2	116	40	204	0	0
AD 670	AD 670		POLY400	,	126,5	1,04	T. Simple	2	0	116.5		404	46,3	0
AD 670 AD 671	AD 671 AD 672	33,8 4,7	B400	130,7 331,3	126,5	2,46	T. Simple	2	0,5	116,5	26,5 26,5	404	46,3	0
AD 671 AD 672		29,8	B400 B400	,	126,5	1,37	<u> </u>	2	0,5			404	0	0
AD 672 AD 674	AD 674 AD 675	34	B400 B400	153,7 185,7	126,5	1,57	Muskingum Muskingum	2	0,5	116,5 116,5	40,5	404	0	0
AD 674 AD 675		19,3	B400 B400	441	126,5	3,03		2	0,5	116,5	42,5 42,5	403	0	0
	AD 676				,		Muskingum		0,5	,				0
AD 676	AD 677	14,3	B400	114,5	110,9	0,91	T. Simple	2		120,2	16,2	683	256,1	-
AD 677	AD 679	19,7	B400	212,7	110,9	1,71	Muskingum	2	0,2	120,2	24,2	684	0	0
AD 679	AD 681	22,2	B400	243,2	110,9	1,89	Muskingum	2	0,2	120,2	26,2	684	0	0
AD 681	AD 682	23,5	B400	178,7	110,9	1,5	Muskingum	2	0,2	122,2	30,2	684	0	0
AD 682	AD 683	28,8	B400	166,4	110,9	1,42	Muskingum	2	0,2	122,2	32,2	684	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
AD 683	AD 684	12,2	B400	151,9	110,9	1,32	Muskingum	2	0,2	122,2	34,2	683	0	0
AD 684	AD 686	19	B400	227,7	110,9	1,8	Muskingum	2	0,2	124,2	36,2	683	0	0
AD 686	AD 692	25,9	B400	141,1	110,9	1,24	Muskingum	2	0,2	126,2	38,2	683	0	0
AD 692	AD 694	15,5	B400	239,8	110,9	1,87	Muskingum	2	0,2	126,2	40,2	683	0	0
AD 694	AD 695	6,8	B400	484,3	110,9	3,12	T. Simple	2	0,2	126,3	40,3	683	0	0
AD 695	AD 423	49,3	B400	267.1	158.9	2,22	Muskingum	2	0	134	30	761	0	0
AD 696	AD 697	31,5	B300	85,9	47,4	1,25	Muskingum	2	2	64	30	77	0	0
AD 697	AD 698	16,5	B300	116.1	46,8	1,55	Muskingum	2	2	64	30	77	0	0
AD 698	AD 699	32,2	BT698	0	100.5	0	T. Simple	2	0	288	26	700	245	796,2
AD 699	AD 525	27,1	B300	102,2	99	1,45	T. Simple	2	0	288,3	26,3	1496	802,3	0
AD 700	AD 701	43,6	B300	86.2	83,4	1,22	T. Simple	2	0	64,6	26,6	175	9,6	0
AD 701	AD 702	51,7	B400	173	83,4	1,36	Muskingum	2	0,6	70,6	40,6	175	0	0
AD 702	AD 703	36,2	B400	219	83,4	1,62	Muskingum	2	0,6	72,6	42,6	175	0	0
AD 702	AD 703	35,1	B500	317,9	224,1	1,75	Muskingum	2	0,0	74	30	408	0	0
AD 703 AD 704	AD 704 AD 705	28,1	B500	485,8	223,3	2,42	Muskingum	2	0	76	32	408	0	0
AD 704 AD 705	AD 705	14,5	B500	399.4	222,8	2,42	Muskingum	2	0	76	32	408	0	0
AD 705 AD 706	AD 700	39,7	B500	671,3	220,3	3,06	Muskingum	2	0	82	32	407	0	0
AD 700	AD 707	8,8	B600	713.9	219,2	2,22	Muskingum	2	0	82	32	407	0	0
AD 707 AD 709	AD 715	68,4	B400	159,3	154,2	1,27	T. Simple	2	0	66,8	24,8	381	30,4	0
AD 709 AD 710	AD 713 AD 709	43,6	B300		75,2	1,1	T. Simple	2	0	64,6	26,6	166	11,7	0
AD 710 AD 715	AD 709 AD 716	16,2	B400	77,7 161.4	154,2	1,46	Muskingum	2	0.8	66,8	38,8	381	0	0
			B400 B400	- ,				2	-,-				0	0
AD 716	AD 717	45,3		321,8	154,2	2,53	Muskingum		0,8	72,8	40,8	381		
AD 717	AD 466	77,5	B400	234,7	227,2	1,87	T. Simple	2	0	72,6	26,6	539	10,1	0
AD 718	AD 719	51,1	B300	171,7	35,2	1,91	Muskingum	2	2	66	30	57	0	0
AD 719	AD 720	7,2	B300	83,8	34,9	1,13	Muskingum	2	2	66	30	57	0	0
AD 720	AD 444	63,6	F720	1720,5	34,8	1,93	Muskingum	2	2	84	34	59	0	0
AD 731	AD 732	18	B300	223,6	74,7	2,85	Muskingum	2	2	86	34	151	0	0
AD 732	AD 526	21,8	B300	214,3	74,6	2,76	Muskingum	2	2	86	36	151	0	0
AD 735	AD 736	27,2	BT735	0	31,7	0	T. Simple	2	0	672	56	384	332,2	0
AD 736	AD 639	72,7	B400	270	31,7	1,44	Muskingum	2	2	674	58	383	0	0
AD 904	AD 906	36,8	B800	716,9	694	1,43	T. Simple	2	0	678,4	18,4	7159	312,7	0
AE 485	AE 486	18	POL300	88,9	49,2	1,29	Muskingum	2	0	144	54	134	0	0
AE 486	AE 487	25,5	POL300	139,7	48,1	1,79	Muskingum	2	0	144	54	133	0	0
AE 721	AE 722	70,6	B300	112,9	78,8	1,73	Muskingum	2	0	72	32	130	0	0
AE 722	AE 723	9,2	B300	81,2	78,6	1,15	T. Simple	2	0	72,1	32,1	130	0	0
AE 723	AE 485	143,5	F723	2680,7	31,5	1,2	Muskingum	2	0,1	144,1	52,1	43	0	0
B 274	B 275	11,4	B300	193	112,7	2,84	T. Simple	2	0	132,1	30,1	462	0	0
B 278	B 274	126,3	B400	227,2	76,5	1,63	Muskingum	2	0,1	132,1	44,1	401	0	0
B 279	B 278	8,1	B300	79	76,5	1,12	T. Simple	2	0	96,1	16,1	394	160,2	0
C 270	C 273	46,6	B600	337,3	135,4	1,13	Muskingum	2	0	76	32	241	0	0
C 272	C 273	9,8	B600	1606,2	109,4	3,24	Muskingum	2	0	70	30	188	0	0
D 369	D 370	28,3	B200	50,9	49,3	1,62	T. Simple	2	2	130,3	24,3	230	47,5	0
E 13	E 14	9,9	POL300	84,8	44,3	1,21	Muskingum	2	2	66	30	76	0	0
E 14	E 15	12,6	POL300	46	44,1	0,74	Muskingum	2	2	66	32	76	0	0
E 15	E 16	21,4	PVC300	127,1	44,1	1,63	Muskingum	2	2	68	32	76	0	0
E 16	E 17	97,8	B300	147	142,3	2,08	T. Simple	2	0	68,8	28,8	257	2,5	0
E 17	E 18	8,2	B300	149	142,3	2,4	Muskingum	2	0,8	68,8	32,8	257	0	0
E 18	E 19	55,7	F18	1777	142,3	3,06	Muskingum	2	0,8	94,8	34,8	247	0	0
E 19	E 20	13,8	POL300	315	242,8	4,92	T. Simple	2	0	498,1	34,1	791	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
E 20	E 25	77,3	PVC300	44,6	43,2	0,63	T. Simple	2	0	499,8	17,8	995	588,8	0
E 21	E 20	15,8	B300	151,8	76,8	2,15	Muskingum	2	2,3	84,3	36,3	163	0	0
E 22	E 21	22,5	B300	79,3	76.8	1,12	T. Simple	2	2	84,3	32,3	163	4,2	0
E 27	E 32	12,4	B300	169	89,8	2,43	Muskingum	2	2	72	32	162	0	0
E 32	E 33	15,2	POL300	220,3	89,5	2,95	Muskingum	2	2	72	32	162	0	0
E 33	E 34	26,1	POL300	130,5	88,9	1,99	Muskingum	2	2	74	32	162	0	0
E 34	E 35	22	POL300	142,1	88	2,12	Muskingum	2	2	76	34	162	0	0
E 35	E 22	85,5	POL300	140,9	88	2,1	Muskingum	2	2	84	34	163	0	0
E 741	E 742	15,4	BT741	0	38	0	T. Simple	2	0	496	32	351	270	194
E 742	E 19	14,1	B300	103,7	100,4	1,47	T. Simple	2	0	496,2	32,2	545	110,6	0
F 356	F 355	57	B300	0	13,8	0,2	T. Simple	2	0	586,1	8,1	478	411,7	0
F 358	F 356	17,7	B300	98,6	95,4	1,39	T. Simple	2	0	82,2	16,2	406	91	0
F 363	F 358	38,6	B300	144,8	64,4	1,99	Muskingum	2	0,4	76,4	26,4	215	0	0
F 364	F 363	27,4	B300	66,6	64,4	0,94	T. Simple	2	0	66,4	18,4	215	49,5	0
G 23	G 24	3,8	B400	471,4	103,5	3,01	T. Simple	2	0,8	208,8	22,8	828	0	0
G 24	G 38	22,8	B400	212,8	206	1,69	T. Simple	2	0	210,2	28,2	1075	16,4	0
G 30	G 31	56,4	B300	42,3	41	0,6	T. Simple	2	2	67,4	25,4	110	14,5	0
G 31	G 36	87,3	B300	72,2	41	1,05	Muskingum	2	3,4	73,4	43,4	110	0	0
G 36	G 730	36,6	B300	76,2	73,8	1,08	T. Simple	2	2	74,5	26,5	178	3,4	0
G 37	G 23	78,7	B300	106,9	103,5	1,51	T. Simple	2	0	208,8	22,8	828	339,1	0
G 38	G 39	19,2	B400	203,8	197,3	1,62	T. Simple	2	0	210,2	22,2	1211	109,5	0
G 39	G 40	23,8	B400	160,1	155	1,27	T. Simple	2	0,2	210,5	18,5	1211	148	0
G 40	G 43	57,6	B400	180,5	155	1,61	Muskingum	2	0,5	210,5	38,5	1210	0	0
G 41	G 42	20,8	B250	60,6	46,4	1,36	Muskingum	2	2	64	30	78	0	0
G 42	G 43	30,5	B300	99,7	46	1,38	Muskingum	2	2	66	32	78	0	0
G 43	G 44	17,5	B400	225,7	201	2,03	T. Simple	2	0	212,2	32,2	1287	0	0
G 44	G 45	11,3	B400	352,9	201	2,9	T. Simple	2	0,2	212,2	32,2	1287	0	0
G 46	G 47	27,6	B300	60,5	58,6	0,86	T. Simple	2	2	78,5	22,5	205	15,5	0
G 48	G 46	23	B300	131	76,1	1,92	Muskingum	2	2	78	32	205	0	0
G 49	G 48	28,5	B300	96,1	76,3	1,51	Muskingum	2	2	76	32	205	0	0
G 50	G 49	23,9	B300	159,3	42,8	1,91	Muskingum	2	2,3	74,3	28,3	146	0	0
G 117	G 119	10,7	B300	126,8	62,5	1,79	Muskingum	2	2	68	32	109	0	0
G 119	G 145	13,2	B300	138,4	62,4	1,91	Muskingum	2	2	68	32	109	0	0
G 121	G 124	31,7	B400	433,5	155,2	3,16	Muskingum	2	0	72	32	258	0	0
G 122	G 121	48,1	B400	233,7	78,4	1,68	Muskingum	2	0	72	32	128	0	0
G 123	G 122	50,3	B300	100,3	78,9	1,57	Muskingum	2	0	68	30	129	0	0
G 124	G 724	24,3	B400	2600,8	276,8	13,46	T. Simple	2	0	72	32	471	0	0
G 126	G 127	30,6	B400	110,7	83,4	0,97	Muskingum	2	0	64	30	135	0	0
G 127	G 128	23,4	B400	118,5	105,3	1,06	Muskingum	2	0	66	30	174	0	0
G 128	G 728	24,2	B500	504,9	104,7	2,03	Muskingum	2	0	66	32	174	0	0
G 129	G 124	54,4	B400	146,8	72,5	1,16	Muskingum	2	0,7	70,7	34,7	129	0	0
G 130	G 129	43,3	B300	74,9	72,5	1,06	T. Simple	2	0	62,7	28,7	128	1,9	0
G 135	G 50	17,6	B250	44,2	42,8	0,9	T. Simple	2	2	72,3	22,3	146	31,8	0
G 141	G 143	22,8	B400	475,7	63,3	2,63	Muskingum	2	2	70	32	113	0	0
G 145	G 24	158,9	B400	362,5	62,3	2,16	Muskingum	2	2	100	36	113	0	0
G 147	G 148	22,4	B400	326,8	27,5	1,58	Muskingum	2	4	68	32	50	0	0
G 148	G 149	46,1	B400	285,3	27,3	1,43	Muskingum	2	4	72	34	50	0	0
G 149	G 38	42,1	B400	449,1	27	1,96	Muskingum	2	4	76	36	50	0	0
G 250	G 253	56,4	B300	187,5	126,9	2,85	Muskingum	2	0	74	32	218	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
G 253	G 257	44,5	B300	197,1	125,2	2,95	Muskingum	2	0	76	32	217	0	0
G 256	G 257	47,7	B300	116,5	26.5	1,33	Muskingum	2	4,1	174,1	24,1	248	0	0
G 257	G 258	38,9	B300	108,2	104,7	1,53	T. Simple	2	0	174,4	14,4	693	204,1	0
G 258	G 259	71	B300	97,7	94,6	1,38	T. Simple	2	0	176,8	12,8	777	132,3	0
G 261	G 256	108,1	B300	27,4	26,5	0,39	T. Simple	2	0	166,1	14,1	248	158	0
G 724	G 725	17.5	B400	207.1	200.5	1,65	T. Simple	2	0	72,2	26,2	471	40.4	0
G 725	G 726	50,8	B400	182,3	176,5	1,45	T. Simple	2	0,2	72,7	24,7	471	35,8	0
G 726	G 727	36,6	B500	481.4	176,5	2,26	Muskingum	2	0,7	78,7	36,7	470	0	0
G 727	G 728	18,6	B500	182,1	176,3	0,93	T. Simple	2	0,7	79	27	470	0,4	0
G 728	G 37	21,3	BT728	0	105,4	0	T. Simple	2	0	208	32	447	190	203
G 729	G 37	15,5	B300	332.1	73,8	3,78	Muskingum	2	2,5	74,5	34,5	178	0	0
G 730	G 729	14,8	B300	82,7	73,8	1,32	Muskingum	2	2,5	74,5	34,5	178	0	0
H 353	H 354	43,2	B300	15,3	14.8	0,22	T. Simple	2	2	81	19	61	20,3	0
H 357	H 353	15,9	B300	174,7	38,3	1,98	Muskingum	2	2	62	30	61	0	0
I 348	I 349	28,5	B300	53,3	51,6	0,75	T. Simple	2	2	90,6	16,6	247	94,2	0
I 352	1 349	58	B300	77	32,5	1,04	Muskingum	2	2	68	32	55	0	0
I 360	I 352	42,5	B300	43,6	32,5	0,68	Muskingum	2	2	64	32	55	0	0
J 222	J 226	7,7	PVC200	53,6	51,9	1,7	T. Simple	2	2	66,1	26,1	110	5,1	0
J 223	J 225	5,8	PVC200	35,6	13,4	1,05	Muskingum	2	4	58	30	21	0	0
J 224	J 223	7	PVC160	17,9	13,4	0,98	Muskingum	2	4	58	30	21	0	0
J 225	J 223	24	B200	25,1	13,3	0,98	Muskingum	2	4	58	30	21	0	0
				,				2				110		0
J 226	J 228	24,3	PVC200	20,6	19,9	0,66	T. Simple		2,1	100,6	14,6		49,6	-
J 227	J 230	38	B300	43,2	13	0,53	Muskingum	2	4	60	32	21	0	0
J 228	J 229	12,7	B200	0	4,7	0,15	T. Simple	2	2,6	397,8	5,8	110	82,6	0
J 229	J 231	24,3	B300	61,2	4,7	0,51	Muskingum	2	3,8	399,8	15,8	110	0	0
J 230	J 232	23,9	B300	50,4	13	0,6	Muskingum	2	4	60	32	21	0	0
J 231	J 235	67,1	B300	27,5	22,7	0,43	Muskingum	2	2	404	32	142	0	0
J 232	J 233	21,5	B300	53,1	26,7	0,75	Muskingum	2	4	60	32	44	0	0
J 233	J 235	20,9	B300	0	13,8	0,2	T. Simple	2	4	67,5	21,5	44	9,5	0
J 235	J 237	15,3	B300	25,7	24,9	0,36	T. Simple	2	2	404,7	12,7	256	75,2	0
J 237	J 245	88,4	B500	331,5	168,9	1,7	Muskingum	2	0	416	36	526	0	0
J 238	J 237	10,6	B400	148,8	144	1,18	T. Simple	2	0	72,1	28,1	272	3	0
J 241	J 242	20,9	B200	7,5	7,2	0,24	T. Simple	2	2	147,3	9,3	61	38,1	0
J 242	J 243	25,7	B300	71,5	7,2	0,65	Muskingum	2	3,3	151,3	19,3	61	0	0
J 243	J 244	28,4	B300	46,2	7,2	0,48	Muskingum	2	3,3	151,3	21,3	61	0	0
J 244	J 245	2,8	B300	469,4	28,2	3,65	T. Simple	2	2	152	30	95	0	0
J 245	J 246	15,9	B500	429,3	212,5	2,18	T. Simple	2	0	416,2	32,2	649	0	0
J 248	J 245	17,9	B300	272,1	17,3	2,15	Muskingum	2	2	60	30	28	0	0
K 247	K 734	30,8	B300	256,3	14	1,94	Muskingum	2	4	62	30	23	0	0
L 587	L 588	20,3	B300	74	71,7	1,05	T. Simple	2	0	74,3	18,3	273	79,2	0
L 588	L 589	22,6	B400	101,9	71,7	0,88	Muskingum	2	0,3	78,3	30,3	273	0	0
L 589	L 590	24,3	B400	116,2	71,7	0,97	Muskingum	2	0,3	80,3	30,3	273	0	0
L 590	L 591	25,6	B400	360,7	328,3	3,25	Muskingum	2	0	80	30	702	0	0
L 591	L 583	12,6	B500	156,4	151,5	0,8	T. Simple	2	0	88,2	16,2	702	187,8	0
N 566	N 569	116,3	B300	143	138,4	2,02	T. Simple	2	2	433,2	35,2	446	32,7	0
N 568	N 570	61,7	B300	156,8	151,8	2,22	T. Simple	2	0	70,4	18,4	536	135,2	0
N 569	N 570	23,8	B400	99,3	96,1	0,79	T. Simple	2	3,2	433,7	35,7	446	55,8	0
N 570	N 575	165,9	B400	297,5	247,9	2,65	Muskingum	2	0	436	66	977	0	0
N 573	N 913	19,2	B300	165,5	105,8	2,48	Muskingum	2	0	66	30	172	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
N 574	N 575	7,3	B700	1852,5	52	2,11	T. Simple	2	1	215	23	635	0	0
N 576	N 574	15,4	B400	174,5	52	1,21	Muskingum	2	1	215	23	635	0	0
N 577	N 576	39,1	POL300	56,4	52	0,91	Muskingum	2	1	215	21	635	0	0
N 578	N 577	40	POL300	53,7	52	0,76	T. Simple	2	0,2	209	7	635	239,4	0
N 579	N 578	8,1	POL300	87,6	84,9	1,24	T. Simple	2	0,1	132,2	10,2	635	66,2	0
N 594	N 595	34,8	POL300	57.6	55.8	0.82	T. Simple	2	0	116.6	10,6	363	188.9	0
N 595	N 579	10,1	POL300	98,4	95,3	1,39	T. Simple	2	0	118,1	10,1	635	148,2	0
N 600	N 601	12,8	B300	39,8	38,5	0,56	T. Simple	2	0	128,3	10,3	280	158,7	0
N 601	N 602	14,8	B300	82,7	38,5	1,15	Muskingum	2	0,3	130,3	16,3	280	0	0
N 602	N 603	11,1	B300	90,6	38,5	1,23	Muskingum	2	0,3	132,3	16,3	280	0	0
N 603	N 604	10.2	B400	214.5	38.5	1,29	Muskingum	2	0,3	132,3	18,3	280	0	0
N 604	N 620	11,6	POLY500	692,1	252,9	3,25	T. Simple	2	0	600,1	32,1	3252	0	0
N 605	N 604	7,7	B400	258,9	21,3	1,24	T. Simple	2	2	444.1	54,1	190	0	0
N 620	N 621	9,9	B700	1060,5	252,9	2,26	T. Simple	2	0,1	600,1	32,1	3252	0	0
N 621	N 575	69,9	B800	569,8	248,7	1,09	Muskingum	2	0,1	602,1	34,1	3249	0	0
N 657	N 660	95,9	B300	184,3	86.1	2,56	Muskingum	2	0	76	32	138	0	0
N 660	N 661	51,6	POLY400	378,2	84,1	2,42	Muskingum	2	0	80	32	137	0	0
N 661	N 663	39,8	POLY400	321,9	83,8	2,15	Muskingum	2	0	80	34	137	0	0
N 663	N 665	11,4	POLY400	300,7	83,4	2,05	Muskingum	2	0	80	34	137	0	0
N 665	N 666	46,7	POLY400	250,4	81,8	1,78	Muskingum	2	0	84	36	136	0	0
N 666	N 667	8,3	POLY400	290,6	81,7	1,78	Muskingum	2	0	84	36	136	0	0
N 667	N 669	26,6	POLY400	299,8	81,4	2,03	Muskingum	2	0	84	36	136	0	0
N 669	N 689	99,7	B700	1573,4	465,4	3,56	Muskingum	2	0	116	34	878	0	0
N 689	N 908	174,6	B700	754,1	458,2	2,05	Muskingum	2	0	138	38	864	0	0
N 690	N 604	-	POLY500	159,2	154,1	0,81	T. Simple	2	0,1	599,5	31,5	2700	744,9	0
N 737	N 738	74,9 11,3	BT737	,	38	0,81	T. Simple	2	0,1	432	34	311	230	-
N 738	N 566	6,9	B1737 B300	0 206,2	199,6	2,92	T. Simple	2	2	432	34	446	6,5	134,6 0
N 908	N 909			0		0	T. Simple	2	0	598		2700		0
	N 690	50,6	BT908		363,7			2	0		56 46.1		1940,1	0
N 909		9,2	POLY500	343,3	332,4	1,75	T. Simple		0	598,1		2700	30,7	0
N 911	N 912	20,6	BT911	0	21,4	0	T. Simple	2		442	54	191	158,3	-
N 912	N 605	50,9	B300	71,9	21,3	0,89	Muskingum	2	2	444	54	190	0	0
N 913	N 914	205,8	B500	122,4	101,3	0,7	Muskingum	2	0	100	34	174	0	0
N 914	N 915	53	BT914	0	113,6	0	T. Simple	2	0	512	54	857	639,2	0
N 915	N 919	1 20.0	B300	449,8	113,6	5,3	T. Simple	2	0	512	54	857	0	0
O 373	O 374	29,6	B300	240,3	195	3,79	Muskingum	2	0	76	32	348	0	0
P 375	P 910	19,8	B1000	909,9	589,3	1,23	T. Simple	2	0	574,3	40,3	2132	0	0
P 377	P 379	2,4	B300	183,6	41,7	2,1	T. Simple	2	2	62	30	67	0	0
P 378	P 377	10,8	B300	110,3	41,7	1,45	Muskingum	2	2	62	30	67	0	0
P 379	P 910	45,1	B300	125,3	40,6	1,58	Muskingum	2	2	66	30	67	0	0
P 385	P 375	136,3	F385	4589,1	499,4	0,93	Muskingum	2	0	574	40	1565	0	0
P 387	P 385	182,2	F387	11609,8	294	1,61	Muskingum	2	0	572	38	940	0	0
P 388	P 387	74	POL300	11	4,2	0,14	Muskingum	2	9,2	319,2	47,2	77	0	0
P 389	P 388	41,9	PVC200	52,4	4,2	1	Muskingum	2	9,2	317,2	21,2	77	0	0
P 406	P 389	61,6	B200	4,3	4,2	0,14	T. Simple	2	2,7	313,2	11,2	76	47,3	0
P 414	P 406	16,9	B200	11,7	11,4	0,37	T. Simple	2	2	120,7	10,7	76	41,1	0
P 607	P 617	11,9	POLY400	276,1	12,9	1,12	T. Simple	2	0,3	242,4	8,4	183	0	0
P 608	P 607	3,5	POL300	0	12,9	0,19	T. Simple	2	0	242,3	8,3	183	137,8	0
P 609	P 608	25,2	B300	82,6	61	1,28	Muskingum	2	0	68	32	101	0	0
P 610	P 609	49,7	B300	99,9	61,4	1,48	Muskingum	2	0	68	32	101	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
P 611	P 610	21,4	B300	132,2	62,1	1,84	Muskingum	2	0	64	30	101	0	0
P 612	P 611	19,3	B300	114,5	62,9	1,66	Muskingum	2	0	62	30	101	0	0
P 613	P 614	14,7	B300	104,9	101,6	1,48	T. Simple	2	2	72,2	28,2	205	5,3	0
P 614	P 615	11,8	POL300	155,3	150,3	2,2	T. Simple	2	0	74,1	28,1	311	6,4	0
P 615	P 616	44	POL300	99,5	96.3	1,41	T. Simple	2	0,1	74,6	22,6	311	64,5	0
P 616	P 385	127.7	POL300	115,9	96.3	1,83	Muskingum	2	0,6	84.6	44,6	316	0	0
P 617	P 618	13,9	B300	76,3	12,9	0,8	Muskingum	2	0,4	244,4	14,4	183	0	0
P 618	P 375	162,9	B300	92,9	89,9	1,31	T. Simple	2	0	248	16	567	157,8	0
P 622	P 614	23,5	POL300	95,3	65,8	1,45	Muskingum	2	0	64	30	106	0	0
P 623	P 613	54	POL300	82,2	55,5	1,25	Muskingum	2	2	72	34	97	0	0
P 624	P 623	51	POL300	90.5	56	1,35	Muskingum	2	2	70	32	97	0	0
P 625	P 624	37	POL300	65,8	56,4	1,05	Muskingum	2	2	68	32	97	0	0
P 626	P 627	8,9	B300	171,9	51,8	2,13	Muskingum	2	2	62	30	84	0	0
P 627	P 628	41,7	B400	398,3	50,9	2,17	Muskingum	2	2	70	32	85	0	0
P 628	P 629	9,9	B400	344,2	50,8	1,96	Muskingum	2	2	70	32	85	0	0
P 629	P 630	1,6	B500	1888,4	50,8	4,16	T. Simple	2	2	70	32	85	0	0
P 630	P 632	14,5	B500	342	150,5	1,69	Muskingum	2	0	76	32	306	0	0
P 632	P 387	14,3	B500	162,8	157,6	0,83	T. Simple	2	0	78,6	24,6	489	77,6	0
P 678	P 680	34,2	B300	98,8	83,1	1,57	Muskingum	2	0	66	30	139	0	0
P 680	P 688	46,4	B300	72,3	70	1,02	T. Simple	2	0	66,7	24,7	171	17,1	0
P 685	P 687	28,9	B300	140	70	1,02	Muskingum	2	0,7	70,7	34,7	171	0	0
										,				
P 687	P 691	11,4	B300	160,4	70	2,19	Muskingum	2	0,7	70,7	36,7	171	0	0
P 688	P 685	37,9	B300	112	70	1,67	Muskingum	2	0,7	68,7	34,7	171	0	0
P 691	P 693	9,8	B300	124,4	70	1,81	Muskingum	2	0,7	70,7	38,7	171	0	0
P 693	P 630	26,5	B500	1029,1	70	2,99	Muskingum	2	0,7	74,7	40,7	170	0	0
P 910	P 376	60,1	B1000	797,8	611,3	1,12	Muskingum	2	0	576	40	2197	0	0
Q 380	Q 381	12,4	B200	19,4	18,8	0,62	T. Simple	2	2	60,3	24,3	45	4,7	0
Q 381	Q 382	1,9	B200	55,3	18,8	1,59	T. Simple	2	2,3	60,3	24,3	45	0	0
R 383	R 386	4,8	B300	145,2	85,6	2,14	T. Simple	2	0	66	30	143	0	0
S 155	S 156	9,8	PVC200	63,7	36,4	2,09	Muskingum	2	2	62	30	58	0	0
S 156	S 157	38,5	B200	65,7	35,7	2,13	Muskingum	2	2	62	30	59	0	0
S 157	S 158	18,5	B300	173,4	35,4	1,93	Muskingum	2	2	64	32	59	0	0
S 158	S 162	11	B300	318	35,3	2,96	Muskingum	2	2	64	32	59	0	0
S 162	S 189	44	B300	187,5	181,6	2,65	T. Simple	2	0	72,3	24,3	486	60,5	0
S 183	S 187	40,5	B300	225,7	28,7	2,19	Muskingum	2	2	66	32	49	0	0
S 184	S 187	43,4	B300	228,5	34,5	2,33	Muskingum	2	2	68	32	59	0	0
S 187	S 162	33,4	B300	153,7	62,6	2,06	Muskingum	2	2	68	32	108	0	0
S 189	S 190	47,7	B400	156,8	151,8	1,25	T. Simple	2	0	78,6	22,6	527	90,3	0
S 190	S 191	36,8	B400	171,2	165,7	1,55	Muskingum	2	0	80	34	554	0	0
S 191	S 192	39,1	B400	186,5	165,6	1,68	Muskingum	2	0	82	34	553	0	0
S 192	S 193	38,3	B400	148,5	143,7	1,18	T. Simple	2	0	88,5	20,5	642	123,7	0
S 193	S 194	50,8	B400	105,3	101,9	0,84	T. Simple	2	0	132,9	14,9	744	264,5	0
S 194	S 903	27,5	B400	160	101,9	1,35	Muskingum	2	0,9	140,9	26,9	744	0	0
S 195	S 199	30,2	B300	147,5	48	1,86	Muskingum	2	2	72	32	88	0	0
S 196	S 195	12,5	PVC200	67,8	48,4	2,34	Muskingum	2	2	70	32	88	0	0
S 199	S 214	44,8	B500	234,7	217,4	1,36	Muskingum	2	0	334	32	1187	0	0
S 202	S 205	14,6	B400	80,2	57,1	0,69	Muskingum	2	0	100	32	172	0	0
S 205	S 289	12,7	B500	747,4	56,9	2,24	Muskingum	2	0	100	32	172	0	0
S 209	S 289	16,2	B300	188,6	80.4	2,56	Muskingum	2	2	66	30	134	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
S 214	S 289	63,2	B500	69,9	67,6	0,36	T. Simple	2	0	336,6	12,6	1270	587,6	0
S 218	S 903	21,3	PVC200	77,1	45,5	2,55	T. Simple	2	0	328,2	30,2	316	0	0
S 219	S 218	15,6	B300	0	13,8	0,2	T. Simple	2	0.2	327,3	7,3	265	211,2	0
S 220	S 219	15,2	B300	81,6	79	1,15	T. Simple	2	0	72,2	20,2	265	58	0
S 280	S 282	6,6	B400	84,3	36,3	0,65	Muskingum	2	2	76	32	71	0	0
S 282	S 283	54.1	B300	71	36.1	1,01	Muskingum	2	2	78	34	70	0	0
S 283	S 905	44	B300	47,9	46,4	0,68	T. Simple	2	2	79	33	94	0,6	0
S 288	S 905	30,5	B500	402.2	182	2	Muskingum	2	0,8	342,8	36,8	1628	0	0
S 289	S 288	48	B500	188	182	0,96	T. Simple	2	0	338,8	24,8	1629	33,3	0
S 294	S 209	59,9	B300	91	48,8	1,31	Muskingum	2	2	66	32	81	0	0
S 305	S 202	39,5	B300	141.3	57,3	1,89	Muskingum	2	0	100	32	172	0	0
S 312	S 305	50,5	B300	34,7	22,8	0,52	Muskingum	2	0	96	30	112	0	0
S 313	S 312	2,1	B200	23,5	22,8	0,75	T. Simple	2	0	90	14	112	45,6	0
S 903	S 199	35	B400	159,6	146,6	1,44	Muskingum	2	0	332	30	1059	0	0
S 905	S 347	83,1	B500	319,5	309,3	1,63	T. Simple	2	0	344,9	28,9	1887	4,7	0
T 99	T 100	37,8	B300	73,2	42,4	1,03	Muskingum	2	2	64	32	71	0	0
T 100	T 100	30,8	B300	40,5	39,2	0,57	T. Simple	2	2	64,9	30,9	71	0,8	0
T 101	T 101	17,2	B300	113,7	39,2	1,46	Muskingum	2	2,9	64,9	34,9	71	0,8	0
T 101	T 114	13,9	B300	80,9	39,2	1,46	Muskingum	2	2,9	66,9	36,9	71	0	0
T 102	T 110	9,1	B200	40,8	35,7	1,14	Muskingum	2	2,9	60	30,9	57	0	0
T 110	T 110	66	B300	160.5	35,7	1,46	Muskingum	2	2	68	32	57	0	0
				, -										
T 111	T 900	23,9	B300	89,7	86,8	1,27	T. Simple	2	0	68,3	26,3	207	18,7	0
T 113	T 114	39,6	B300	94,5	86,8	1,52	Muskingum	2	0,3	70,3	38,3	206	0	0
T 114	T 323	36	B300	82,1	79,5	1,16	T. Simple	2	0	72,5	20,5	277	62,3	0
T 150	T 151	14,3	B300	182,3	119,8	2,75	Muskingum	2	0	78	32	222	0	0
T 151	T 164	51,2	B300	215	118,4	3,11	Muskingum	2	0	82	34	221	0	0
T 164	T 165	3,2	B300	355,6	136,5	4,7	T. Simple	2	0	82	32	252	0	0
T 165	T 167	10,1	B300	226	136,5	3,35	T. Simple	2	0	82,1	32,1	252	0	0
T 166	T 167	4,5	B300	217,3	27,9	2,11	T. Simple	2	2	60	30	44	0	0
T 167	T 170	39,8	B400	432,9	212,7	3,43	Muskingum	2	0	86	32	386	0	0
T 170	T 171	42,4	B400	207,7	201,1	1,65	T. Simple	2	0	86,4	24,4	587	89,7	0
T 171	T 181	112,3	B400	188,4	182,4	1,5	T. Simple	2	0	87,1	21,1	663	102,4	0
T 181	T 182	11,9	B400	258,9	250,6	2,06	T. Simple	2	0	88,1	24,1	836	19,9	0
T 182	T 296	63	B500	242,4	234,7	1,23	T. Simple	2	0	154,8	16,8	1457	247,3	0
T 295	T 296	10,9	B300	142,9	29,4	1,59	Muskingum	2	2	62	30	48	0	0
T 296	T 300	39,9	B500	298,2	263,5	1,71	Muskingum	2	0	160	32	1504	0	0
T 300	T 335	41,8	B400	224,7	217,6	1,79	T. Simple	2	0	160,3	14,3	1597	211,5	0
T 301	T 300	10,2	B300	133,6	26,9	1,48	Muskingum	2	2	62	30	43	0	0
T 319	T 182	12,4	PVC400	484,4	67,2	2,71	T. Simple	2	0,3	152,4	22,4	561	0	0
T 320	T 319	29,6	PVC400	179,1	67,2	1,32	Muskingum	2	0,3	152,3	22,3	561	0	0
T 321	T 320	21	B300	69,4	67,2	0,98	T. Simple	2	0	148,3	12,3	560	57,3	0
T 322	T 321	50,2	B300	60,2	58,3	0,85	T. Simple	2	0	144,9	12,9	473	207,1	0
T 323	T 322	5,1	B300	235,6	79,5	3,01	T. Simple	2	0,5	72,5	20,5	277	0	0
T 325	T 322	25,2	B250	24,6	23,9	0,5	T. Simple	2	0	98,7	12,7	130	58,5	0
T 327	T 328	27,8	B200	23,3	22,6	0,74	T. Simple	2	0	88,6	14,6	107	42,3	0
T 328	T 332	34,3	PVC200	70,6	22,6	2	Muskingum	2	0,6	92,6	20,6	107	0	0
T 329	T 301	28,3	B300	157	27,1	1,66	Muskingum	2	2	62	30	43	0	0
T 332	T 341	22,5	B300	137,4	22,6	1,43	Muskingum	2	0,6	92,6	22,6	107	0	0
T 334	T 901	9,6	B400	139,8	135,4	1,11	T. Simple	2	0,2	226,3	10,3	1774	655,1	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
T 335	T 334	25,9	B400	229,2	221,9	1,82	T. Simple	2	0	162,2	14,2	1774	150,4	0
T 336	T 335	9,2	B300	74,1	71,8	1,05	T. Simple	2	0	68,1	24,1	177	16,8	0
T 339	T 340	35,2	B600	589.5	304.4	2,1	Muskingum	2	0	242	32	2282	0	0
T 341	T 342	13,5	B300	144,8	22,6	1,49	Muskingum	2	0,6	94,6	24,6	107	0	0
T 342	T 901	26,1	B400	174,8	169,2	1,39	T. Simple	2	0	96,3	30,3	509	0,2	0
T 343	T 342	35	B300	97,7	94,5	1,38	T. Simple	2	0	68,4	20,4	315	72,1	0
T 344	T 343	12,4	B300	228,5	192,6	3,62	Muskingum	2	0	66	30	315	0	0
T 900	T 113	36,5	B300	134,2	86.8	2,02	Muskingum	2	0,3	68,3	34,3	206	0	0
T 901	T 339	25,4	B600	594,3	304,6	2,11	Muskingum	2	0	236	32	2283	0	0
U 391	U 392	67,3	B300	73,6	27,6	0,97	Muskingum	2	4	78	34	55	0	0
U 392	U 395	16,7	B300	127.9	57.1	1.76	Muskingum	2	2	78	34	124	0	0
U 394	U 409	48,6	B500	225,3	178,2	1,27	Muskingum	2	2	86	34	336	0	0
U 395	U 394	36,4	B500	305,3	179,8	1,62	Muskingum	2	2	82	32	336	0	0
U 396	U 392	11,3	B400	0	29,7	0,24	T. Simple	2	2	76,7	28,7	69	5,6	0
U 398	U 395	47,5	B400	241,4	101,9	1,84	Muskingum	2	2	68	32	169	0	0
U 399	U 398	46,7	B300	120.5	53,4	1,65	Muskingum	2	2	66	30	88	0	0
U 401	U 399	7,8	B300	222	54,8	2,6	Muskingum	2	2	62	30	88	0	0
U 404	U 396	91,4	B400	267,1	42	1,55	Muskingum	2	2	76	32	69	0	0
U 409	U 410	23,2	B500	257,8	225,6	1,48	Muskingum	2	2	86	34	424	0	0
U 411	U 404	7,6	B300	89,4	42,5	1,25	Muskingum	2	2	62	30	68	0	0
V 52	V 75	57,6	B400	452,1	50	2,37	Muskingum	2	2	70	32	81	0	0
V 54	V 74	28	B400	40,9	39.6	0,33	T. Simple	2	2	147,3	15,3	321	190,8	0
V 55	V 54	85,6	B400	128,2	124,1	1,02	T. Simple	2	0,7	78	28	321	13,4	0
V 56	V 55	52,4	B400	137,1	132,7	1,09	T. Simple	2	0	76.7	26,7	321	23,9	0
V 58	V 56	40,3	B400	483,7	114,5	3,15	Muskingum	2	0	76	32	212	0	0
V 62	V 58	46,4	B300	33	32	0,47	T. Simple	2	2	71,5	29,5	73	5,5	0
V 63	V 64	59,6	B300	127	44,1	1,63	Muskingum	2	2	68	32	73	0	0
V 64	V 62	46,8	B300	95,3	43,8	1,32	Muskingum	2	2	70	32	73	0	0
V 74	V 75	17,3	B300	24,2	23,4	0,34	T. Simple	2	3,3	238	12	321	129	0
V 75	V 80	29,1	B300	37,3	36,1	0,53	T. Simple	2	2	240,8	10,8	444	79,3	0
V 77	V 80	8,8	B300	326,9	162,8	4,62	T. Simple	2	0	70	32	275	0	0
V 79	V 77	38,7	B300	199,3	162,8	3,14	Muskingum	2	0	70	32	275	0	0
V 80	V 81	40,8	B300	206,5	199,9	2,92	T. Simple	2	0	242,3	28,3	782	14,2	0
V 81	V 82	38,8	B300	206,1	199,6	2,92	T. Simple	2	0,3	242,5	28,5	782	0,3	0
V 82	V 83	38,7	B300	177,8	172,2	2,52	T. Simple	2	0,5	242,8	24,8	782	29	0
V 83	V 85	37,9	B300	226,9	219,7	3,21	T. Simple	2	0	242,2	24,2	969	50,1	0
V 85	V 86	27,6	B400	598,9	219,7	4,4	T. Simple	2	0,2	242,3	24,3	969	0	0
V 86	V 88	27	B400	399,8	237,1	3,32	T. Simple	2	0	244,2	32,2	1000	0	0
V 88	V 90	25,2	B400	353,2	237,1	3,01	T. Simple	2	0,2	244,3	32,3	1000	0	0
V 90	V 345	47,3	B700	396,1	383,5	1,03	T. Simple	2	0	246,8	24,8	1577	31,7	0
V 98	V 90	72,7	B300	135	92,4	2,06	Muskingum	2	0	116	32	398	0	0
V 103	V 98	67,8	B300	128,1	69,2	1,85	Muskingum	2	1	113	29	358	0	0
V 104	V 103	69,3	B300	71,5	69,2	1,01	T. Simple	2	0	97	17	357	151,1	0
V 105	V 104	34,1	B400	289,7	172,8	2,41	Muskingum	2	0	76	32	287	0	0
V 106	V 104	31,4	B300	159,5	15,4	1,43	Muskingum	2	4	62	32	26	0	0
V 107	V 105	13,5	B400	589,5	146,7	3,89	Muskingum	2	0	72	32	242	0	0
V 133	V 107	58,1	B300	324,5	146,9	4,48	Muskingum	2	0	72	32	243	0	0
V 345	V 346	103,6	B700	965,1	395,4	2,38	Muskingum	2	0	280	34	1600	0	0
W 65	W 66	46,1	F65	593,9	151,9	2,31	Muskingum	2	0	74	32	262	0	0

Noeud Amont	Noeud Aval	Longueur	Liaison	Débit PS	Débit Maxi	Vitesse Maxi	Méthode Propagation	Pas mn	Top Entrée	Top Sortie	Top Maxi	Volume Transité	Volume Stocké	Volume Débordé
W 66	W 67	31	PVC300	130,1	126	1,84	T. Simple	2	0	74,3	28,3	262	10	0
W 67	W 69	45,4	PVC400	177,2	171,5	1,41	T. Simple	2	0	76,5	22,5	570	59,8	0
W 68	W 67	16,2	PVC300	97,4	94,3	1,38	T. Simple	2	0	66,2	20,2	308	67,7	0
W 69	W 918	123,8	PVC400	329,2	182	2,69	Muskingum	2	0	106	34	602	0	0
W 71	W 69	3,6	PVC200	121,3	10,5	2,37	T. Simple	2	6	64	32	19	0	0
W 916	W 917	26	BT916	0	7,8	0	T. Simple	2	0	1450	70	293	311,9	0
W 917	W 918	2,7	B300	335,2	7,8	1,96	T. Simple	2	6	1450	70	293	0	0
X 1	X 4	19,2	B300	170,2	19,1	1,59	Muskingum	2	4	64	32	34	0	0
X 2	X 3	13,7	B350	187,8	48	1,63	Muskingum	2	2	78	32	95	0	0
X 3	X 6	17,5	B300	195,3	47,9	2,28	Muskingum	2	2	78	34	95	0	0
X 4	X 5	11,7	B350	307,3	19	1,77	Muskingum	2	4	64	32	34	0	0
X 5	X 6	9,9	B350	215,6	18,9	1,38	Muskingum	2	4	64	32	34	0	0
X 6	X 7	18,5	B350	305,4	111,9	2,93	Muskingum	2	2	80	32	208	0	0
X 7	X 8	22,2	B350	271,3	110,9	2,68	Muskingum	2	2	80	32	208	0	0
X 8	X 9	50,2	POLY350	256,3	110,7	2,57	Muskingum	2	2	84	34	208	0	0
X 9	X 10	70,4	POL300	139,4	135	1,97	T. Simple	2	2	84,6	30,6	281	4,5	0
X 10	X 11	33,3	POL300	125,5	121,5	1,78	T. Simple	2	2	86,3	28,3	309	24,1	0
X 11	X 12	21,9	POL300	114	110,3	1,61	T. Simple	2	2,3	86,5	26,5	309	19,1	0
Y 509	Y 510	21,4	B300	134	36,4	1,61	Muskingum	2	2	62	30	59	0	0
Y 510	Y 513	28,6	B300	77,5	35,7	1,07	Muskingum	2	2	62	30	59	0	0
Y 513	Y 515	43,2	F513	1913,3	35,4	0,78	Muskingum	2	2	80	32	60	0	0
Y 515	Y 516	19,5	B300	177,9	82,6	2,47	Muskingum	2	2	80	32	141	0	0
Z 511	Z 512	13,2	B300	123,8	51,8	1,67	Muskingum	2	2	62	30	84	0	0
Z 512	Z 514	37,7	F512	557,5	50,7	0,9	Muskingum	2	2	70	32	85	0	0
Z 514	Z 519	49,5	F514	656,4	50,5	1,1	Muskingum	2	2	76	32	85	0	0